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Relaxation in Liquids

1 Introduction

This book is part of the GAMMA NMR simulation platform?. It deals exclusively with the theory

and simulation of NMR relaxation and exchange. With GAMMA usersmay readily build programs

to simulate awide variety of relaxation phenomena. These can range in complexity from arelative-

ly simple treatment using the “phenomenological” Bloch equations to a full blown Liouville space
Redfield treatment using superoperators.

1.1 Relaxation Equation(s) Based on Simple Models

We can jump up one level in our treatment of relaxation by using a quantum mechanical approach
but use simple models for what the spins do. For example, using motional model of a spherical top
diffusing in an isotropic liquid we can exactly treat a case of dipolar relaxation effects. This allows
one to make explicit formulae for expected T1, T2, and NOE values. The same can be said for other
relaxation mechanisms (based on single spins or isolated spin pairs)and we can use this “single
spin” and two spin” approach to deduce what will occur in multi-spin systems. This will of course
not account for cross-correlation effects nor the effects of asymmetric motions.

What GAMMA provides is quite simple: The user works with a spin system in his/her program.
The system contains the information (inter-nuclear distances, CSA values, quadrupolar couplings,
a correlation time......) necessary to perform computations of T1, T2, and NOE values using simple
models. Several GAMMA functions are provided which take a spin system as a function argument,
compute the desired value(s), and return those values to the user.

1. GAMMA is computational platform designed for the simulation of NMR phenomena by Smith, Levante,
Meier and Ernst.

Scott Smith June 8, 1998
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2 Common Dipolar Relaxation Equations

Relaxation by dipolar interactions is the most commonly treated relaxation mechanism in NMR.
This chapter discussesthe GAMMA module that supplies commonly used dipolar relaxation equa-
tions. In most cases the equations were derived using a quantum mechanical treatment on asingle
spin pair that is dynamically moving as arandomly diffusing spherical top. In multiple spin sys-
tems the relaxation values returned by these functions employ a sum over s spin pairs.

2.1 Available Dipolar Relaxation Functions

R1 DD - Dipolar longitudinal relaxation rates

R1 DD _max - Maximum dipolar longitudinal relaxation rate
R2 DD - Dipolar transverse relaxation rates

R2 DD_max - Maximum dipolar transverse relaxation rate
T1 DD - Dipolar longitudinal relaxation times

T1 DD _max - Maximum dipolar longitudinal relaxation time
T2 DD - Dipolar transverse relaxation times
T2_DD_max - Maximum dipolar transverse relaxation time
Lwhh_DD - Dipolar half-height linewidths
LWhh_DD_max - Maximum dipolar half-height linewidth

R2 DDMQT - Dipolar multiple quantum transitions relaxation times
NOE - Nuclear Overhauser Enhancement

2.2 Covered Dipolar Relaxation Theory

Dipole-Dipole Spin-Lattice Relaxation
Dipole-Dipole Spin-Spin Relaxation
Dipole-Dipole Relaxation Linewidths
Two Spin Approximation

Nuclear Overhauser Effect (NOE)
Dipole-Dipole Relaxation Equations
Dipole-Dipole Two Spin Relaxation-

2.3 Dipolar Relaxation Figures

Dipolar Longitudinal Relaxation Times versus Correlation Time
Dipolar Transverse Relaxation Time versus Correlation Time
Dipolar Relaxation Equations
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2.4 Dipolar Relaxation Example Programs

Ti1plot_Dip.cc  Generate Plots of Dipolar T1 versus tau page 34
T2plot_Dip.cc  Generate Plots of Dipolar T2 versus tau page 35
T1T2 Dip.cc Classical Dipolar Relaxation Values Table page 36

Copyright Scott Smith June 8, 1998
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2.5 Dipolar Relaxation Equations

251 R1 DD

Usage:
#include <gamma.h>
row_vector R1_DD(sys_dynamic &dsys);
double R1_DD(sys_dynamic &dsys, int spinl);
double R1_DD(sys_dynamic &dsys, int spinl, int spin2);

Description:

The function R1_DD returns avalue or values for the longitudinal relaxation rate(s) expected from dipole-
dipoleinteractions for the spin in the system dsys. Returned units will be inverted seconds.

1. R1_DD(sys dynamic &dsys) - Thelongitudinal relaxation rates of all spinsin the system arereturnedin
arow vector. Each spin isassumed interacting with all other spins and atwo-spin approximation is used.

2. double R1_DD(spin_sys&sys, int spin) - The longitudinal relaxation rate resulting from dipole-dipole
interactions for spin spin is returned based on atwo-spin approximation.

3. doubleR1_DD(sys dynamic& dsys, int spinl, int spin2) - Thelongitudinal relaxation rate resulting from
the dipole-dipole interaction between spinl and spin2 is returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation

time. Thisistaken to be the first value stored in dsys, i.e. its T, value.

Return Value:

Either arow vector a a double precision number is returned.

Examples:
#include <gamma.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector R1s = R1_DD(sys); /I Vector of relaxation rates
double R10 = R1_DD(sys, 0); /I Relaxation rate of spin 1
double R101 = R1_DD(sys,0,1); I/l Relaxation rate of spin 1 by spin 2

Mathematical Bas's:

For an isotropic spherical top, the transverse relaxation rate expected from the dipole-dipole inter-
action of two spins will depend upon whether the two spins aredlike (), or untike (). The
corresponding formulae are given below for a spin which is being relaxed by another spin of spin
guantum numbes

1 £t 2 6 12
RPDU = = 2—§(S+1 [ + + }
! TDDU 72n >t 1+AwAT2 1+ (wT)2 1+ () +wg)212

1 £ 1 4
RDDL = L +1 [ " }
! TDDU 1on ) 1+ (T)2 1+ (20T1)2

Copyright Scott Smith June 8, 1998
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Thedipolar interaction constant, ¢2, asdefined in GAMMA isgiven by Eg. (1-1)(1-1) on page 18.
Application of the two-spin approximation produces the formula utilized when there are multiple
spin pairsin the system.

3 REC(i.))

i>i

RPP(i)

252 R1 DD_max

Usage:

#include <gamma.h>
double R1_DD_max(sys_dynamic &dsys);

Description:

The function R1_DD_max returns a value for the maximum longitudinal relaxation rate expected from di-
pole-dipole interactions. The function compares the rates for each spin in the input system dsys.

Return Value:

A double precision number is returned.

Example:
#include <gamma.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
double Rmax = R1_DD_max(sys); Il Maximum relaxation rate

Mathematical Basis:

See the function description fBd_DD.

2.5.3 R2_DD

Usage:
#include <gamma.h>
row_vector R2_DD(sys_dynamic &dsys);
double R2_DD(sys_dynamic &dsys, int spinl);
double R2_DD(sys_dynamic &dsys, int spinl, int spin2);
Description:
The function R2_DD returns avalue(s) for the transverse relaxation rate expected from dipole-dipole inter-
actions.

1. R2 DD(sys dynamic &dsys) - Thetransverserelaxation rates of all spinsin the system dsysarereturned
inarow vector. Each spinisassumed interacting will al other spinsin the system and atwo-spin approx-
imation is used.

2. double R2 DD(spin_sys&sys, int spin) - The transverse relaxation rate resulting from dipole-dipole in-

Copyright Scott Smith June 8, 1998
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teractions for spin spin of system dsysis returned based on a two-spin approximation.

3. double R2 DD(sys dynamic& dsys, int spinl, int spin2) - The transverse rel axation rate resulting from
the dipole-dipol e interaction between spinl and spin2 of system dsys is returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Examples:
#include <gamma.h>
sys _dynamic dsys, Il Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector R2s = R2_DD(sys); /I Vector of relaxation rates
double R2i0 = R2_DD(sys, 0); /I Relaxation rate of spin 1
double R201 = R2_DD(sys,0,1); I/l Relaxation rate of spin 1 by spin 2

Mathematical Basis:

For an isotropic spherical top, the transverse relaxation rate expected from the dipole-dipole inter-
action of two spins will depend upon whether the two spins aredlike (), umiike (), or unlike
with resolved scalar couplingfa ). The corresponding formulae are given below for a spin which
is being relaxed by another spin of spin quantum number

1 £t 1 3 6 6
RDDU = = 2—5(S+1 [4+ + + + J
2 THDU 72n> " ) 1+AwhkT2 1+ w212 1+ wdt2 1+ () +wg)?t?
2
RPDJ = 1 E—TS(S+ 1)[4+ 1 43 L3 . 6 }
TDDJ 721 1+AwhT2 1+ w212 1+ w12 1+ (0 + wg)?12

1 £%1 5 2
RPPL = —— = >— S+1[3+ + J
2 TDDL 24> ) 1+ (1)2 1+ (20wT1)2
The dipolar interaction constarf , as defined in GAMMA is given by Eg. (1-1) on page 18. Ap-
plication of the two-spin approximation produces the formula utilized when there are multiple spin
pairs in the system.

RPP(I) = RPP(i,j)
i>i
Two spins are considered “like” if the are the same isotope types, regardless of any chemical shift

differences. Thus, spins are unlike if they are different isotope types. Scalar coupling is considered
only in the case of two unlike spins.

Copyright Scott Smith June 8, 1998
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254  R2 DD_max

Usage:

#include <gamma.h>
double R2_DD_max(sys_dynamic &dsys);

Description:

The function R2_DD_max returns avalue for the maximum transverse rel axation rate expected from dipole-
dipoleinteractions. The function compares the rates for each spin in the input system dsys.

Return Value:

A double precision number is returned.

Example:
#include <gamma.h>
sys dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
double Rmax = R2_DD_max(sys); /l Maximum relaxation rate

Mathematical Basis:

See the function description fB2_DD.
255 T1 DD

Usage:

#include <gamma.h>

row_vector T1_DD(sys_dynamic &dsys);

double T1_DD(sys_dynamic &dsys, int spinl);

double T1_DD(sys_dynamic &dsys, int spinl, int spin2);
Description:

The function T1_DD returns a value(s) for the longitudinal relaxation time expected from dipole-dipole in-
teractions.

1. T1 DD(sys dynamic &dsys) - The longitudinal relaxation times of al spinsin the system dsys are re-
turned in arow vector. Each spin is assumed interacting will all other spinsin the system and atwo-spin
approximation is used.

2. doubleT1_DD(spin_sys&sys, int spin) - The longitudinal relaxation time resulting from dipole-dipole
interactions for spin spin of system dsysis returned based on atwo-spin approximation.

3. double T1 DD(sys dynamic& dsys, int spinl, int spin2) - The longitudinal relaxation time resulting
from the dipole-dipol e interaction between spinl and spin2 of system dsysis returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation

time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Copyright Scott Smith June 8, 1998
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Examples:
#include <gamma.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector T1ls = T1_DD(sys); Il Vector of relaxation times
double T10 = T1 _DD(sys, 0); // Relaxation time of spin 1
double T1i01 = T1_DD(sys,0,1); // Relaxation time of spin 1 by spin 2

Mathematical Bas's:

The longitudinal relaxation time is the inverse longitudinal relaxation rate. The two applicable
equations are shown below for a single spin pair (left) and multiple spin pairs involving spin i

(right).

1

1/TPP(i) = RPP(i)
See the associated Rinctions R1_DD) for the relaxation rate formulae.

256 T1 DD_max

Usage:

#include <gamma.h>
double T1_DD_max(sys_dynamic &dsys);

Description:

The function T1_DD_max returns avalue for the maximum longitudinal relaxation time expected from di-
pole-dipole interactions. The function compares the times for each spin in the input system dsys.

Return Value:

A double precision number is returned.

Example:
#include <gamma.h>
sys_dynamic dsys; // Set up a dynamic system
dsys.read(“filename.sys”); /l Read in system from file
double Tmax = T1_DD_max(sys); /l Maximum relaxation time

Mathematical Bas's:

See the function description féd._DD.

Copyright Scott Smith June 8, 1998
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2.5.7 T2 DD
Usage:

#include <gamma.h>

row_vector T2_DD(sys_dynamic &dsys);

double T2_DD(sys_dynamic &dsys, int spinl);

double T2_DD(sys_dynamic &dsys, int spinl, int spin2);

Description:

The function T2_DD returns a value(s) for the transverse relaxation time expected from dipole-dipole inter-
actions.

1. R2_DD(sys dynamic&dsys) - Thetransverserelaxationtimesof all spinsinthe system dsysare returned
inarow vector. Each spinisassumed interacting will al other spinsin the system and atwo-spin approx-
imation is used.

2. double R2_DD(spin_sys&sys, int spin) - The transverse relaxation time resulting from dipole-dipolein-
teractions for spin spin of system dsysis returned based on a two-spin approximation.

3. doubleR2 _DD(sys dynamic& dsys, int spinl, int spin2) - The transverse rel axation time resulting from
the dipole-dipol e interaction between spinl and spin2 of system dsys is returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Examples:
#include <gamma.h>
sys _dynamic dsys, Il Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector T2s = T2_DD(sys); Il Vector of relaxation times
double T20 = T2_DD(sys, 0); /I Relaxation time of spin 1
double T201 = T2_DD(sys,0,1); /I Relaxation time of spin 1 by spin 2

Mathematical Bas's:

The transverse relaxation time is the inverse transverse relaxation rate. The two applicable equa-
tions are shown below for a single spin pair (left) and multiple spin pairs involving spin i (right).

T, = Ri 1/T9D(i) = RDP(i)
2

See the associated Rinctions R2_DD) for the relaxation rate formulae.

For an isotropic spherical top, the transverse relaxation time expected from the dipole-dipole inter-
action of two spins will depend upon whether the two spins aredike ( ), unike ( ), or unlike
with resolved scalar couplingfs ). The corresponding formulae are given below for a spin which
Is being relaxed by another spin of spin quantum nureber

Copyright Scott Smith June 8, 1998
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258 T2 DD _max

Usage:

#include <gamma.h>
double T2_DD_max(sys_dynamic &dsys);

Description:

Thefunction T2_DD_max returns avalue for the maximum transverse rel axation time expected from dipole-
dipoleinteractions. The function compares the times for each spin in the input system dsys.

Return Value:

A double precision number is returned.

Example:
#include <gamma.h>
sys dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
double Tmax = T2_DD_max(sys); /l Maximum relaxation time

Mathematical Basis:

See the function description fé2_DD.
2.5.9 LWhh_DD

Usage:

#include <gamma.h>

row_vector LWhh_DD(sys_dynamic &dsys);

double LWhh_DD(sys_dynamic &dsys, int spinl);

double LWhh_DD(sys_dynamic &dsys, int spinl, int spin2);
Description:

The function LWhh_DD returns avalue(s) for the linewidths (at half-height) expected from dipole-dipole in-
teractions.

1. LWhh _DD(sys dynamic &dsys) - The linewidths of all spinsin the system dsys are returned in arow
vector. Each spin is assumed interacting will all other spinsin the system and a two-spin approximation
isused.

2. double LWhh_DD(spin_sys&sys, int spin) - The linewidth resulting from dipole-dipole interactionsfor
spin spin of system dsysis returned based on a two-spin approximation.

3. double LWhh_DD(sys dynamic& dsys, int spinl, int spin2) - The linewidth resulting from the dipole-
dipoleinteraction between spinl and spin2 of system dsysis returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Copyright Scott Smith June 8, 1998
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Examples:
#include <gamma.h>
sys_dynamic dsys; I/ Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector LWs = LWhh_DD(sys); Il Vector of Linewidths
double LWO = LWhh_DD(sys, 0); /I Linewidth of spin 1
double LWO1 = LWhh_DD(sys,0,1); /[ Linewidth spin 1 due to spin 2

Mathematical Bas's:

For an isotropic spherical top, the transverse relaxation rate expected from the dipole-dipole inter-
action of two spins will depend upon whether the two spins areolike (), umtike (), or unlike
with resolved scalar couplingfs ). The corresponding formulae are given below for a spin which
Is being relaxed by another spin of spin quantum nummber

V4
RPDU = L1 - ETgse 1)[4+ 1 , 3 ., 6 6 J
TDDU 721 1+AwhkT2 1+ w212 1+ wdt2 1+ () + wg)?t?
1 £%1 1 3 3 6
RPDJ = - = 2— S+1[4+ + + + }
2 TDDJ 72n> " ) 1+A0%T2 1+w212 1+ w312 1+ () + wg)?12
2
Rpot = L = Plgsipae 5 42 ]
TDDL 247 1+ (1) 1+ (20w1)2

The dipolar interaction constag  , as defined in GAMMA is given by Eg. (1-1) on page 18 and
application of the two-spin approximation produces

op 1o
RPP(I) = RPP(i,j)
i>i
The line-width at half-height is related to the transverse relaxation rate by the simple formula
LWRP = RPP/mt
which under the two spin approximation is
Bp ns O
LWRP(i) = RPP(i)/m = §¥ RPO(, )/
O > i O
2510 LWhh_DD_max

Usage:

#include <gamma.h>
double LWhh_DD_max(sys_dynamic &dsys);

Copyright Scott Smith June 8, 1998
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Description:

Thefunction LWhh_DD_max returns a value for the maximum linewidth expected from dipole-dipole inter-
actions. The function compares the times for each spin in the input system dsys.

Return Value:

A double precision number is returned.

Example:
#include <gamma.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
double LWmax = LWhh_DD_max(sys); [l Maximum linewidth

Mathematical Basis:
See the function description fovWhh_DD.

2511 R2 DDMQT

Usage:

#include <gamma.h>

row_vector R2_DDMQT(sys_dynamic &dsys, int MQC);

double R2_DDMQT(sys_dynamic &dsys, int MQC, int spinl);

double R2_DDMQT(sys_dynamic &dsys, int MQC, int spinl, int spin2);

Description:

Thefunction R2_DDMQT returns avalue(s) for the transverse relaxation rate expected for multiple quantum

transitions from dipole-dipole interactions.

1. R2 _DDMQT(sys dynamic &dsys, int MQC) - The transverse relaxation rates of the multiple quantum
transition of order MQC for all spinsinthe system dsysarereturned in arow vector. Each spinisassumed
interacting will al other spinsin the system and a two-spin approximation is used.

2. double R2_ DDMQT(spin_sys &sys, int MQC, int spin) - The transverse relaxation rate of the multiple
guantum transition of order MQC resulting from dipole-dipole interactions for spin spin of system dsys
isreturned based on a two-spin approximation.

3. doubleR2 DDMQT(sys dynamic& dsys, int MQC, int spinl, int spin2) - The transverse relaxation rate
of the multiple quantum transition of order MQC resulting from the dipole-dipole interaction between
spinl and spin2 of system dsys is returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation

time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Examples:
#include <gamma.h>
sys_dynamic dsys; /I Set up a dynamic system
dsys.read(“filename.sys”); /l Read in system from file

Copyright Scott Smith June 8, 1998
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row_vector R = R2_DDMQT(sys,2); /I Vector of DQT relaxation rates
double RO=R2 _DDMQT(sys,0, 0); I ZQT relax. ratesinvolving spin 1
double RO1 = R2 DDMQT(sys,0,0,1); I ZQT relax. rate, spin 1 and spin2

Mathematical Bas's:

For an isotropic spherical top, formulae for the transverse relaxation rates of the multiple quantum
transitions of order MQC expected from the dipole-dipole interactions of two spins are shown be-
low for a spin which is being relaxed by another spin of spin quantum number S.

) _

RODNZQT = T ggy g 2 e A J

[R™] 72ns( )_1+[(u)|—u)S)T]2 1+(w1)? 1+ (wgr)?
5 _

[RDDI T = Slgsenfar—Lt 43 .3 ; }
7971 L 1+A0%T2 1+ (01)2 1+ (wgl)2 1+ (0w +wg)2t2
2 _

RDDIPQT = ETggy g R = }

[RZ™] 721'[8( )_1+((A),T)2 1+(wgt)?  1+[(0) + wg)T]?

The superscriptbbJisleft on asareminder that these equations apply for spinswith resolved scalar
coupling. The dipolar interaction constant, ¢°, as defined in GAMMA is given by Eg. (1-1) on

page 18 and application of the two-spin apprli)ximation produces

spins
REP() =y REP(i.j)

j>i
2512 NOE

Usage:

#include <gamma.h>
double NOE(sys_dynamic &dsys, int spinl, int spin2, int eta=0);

Description:

Thefunction NOE returnsavaluefor the nuclear Overhauser enhancement to spinl resulting from thedipolar
interaction with spin2. The computation takes the spins from the system dsys. It is assumed that the system
moves as an isotropic manner characterized by asingle correlation time. Thisistaken to be the first value
listed dsys. The internuclear separation between the spinsis also obtained from dsys. The value returned is
given by

Y-|: 6 _ 1 J
L1+ (0 + )22 1+Aw?T?

P =

Vi[ 1,3 6 }
1+A03T? 1+ (w1)2 1+ (0 +wy)?T?

unless a non-zero value of etais supplied as an argument. For non-zero eta the value returned is given by

Copyright Scott Smith June 8, 1998
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Nnoe = 1+p
Return Value:

A double precision number is returned.

Examples:
#include <gamma.h>
sys _dynamic dsys, Il Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
double rho = NOE(dsys, 0, 1); /I Get NOE of spin O due to spin 1
double eta = NOE(dsys, 0, 1, 1); Il Get eta NOE of spin 0 due to spin 1
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2.5

2.6 Dipolar Relaxation Discussion

2.6.0.1 Dipolar Relaxation Sections

Dipole-Dipole Spin-Lattice Relaxation
Dipole-Dipole Spin-Spin Relaxation
Dipole-Dipole Relaxation Linewidths

2.6.0.2 Dipolar Relaxation Figures

Dipolar Interaction Constant Strengths
Dipolar Longitudinal Relaxation Times versus Correlation Time
Dipolar Transverse Relaxation Time versus Correlation Time

2.6.0.3 Dipolar Relaxation Example Programs

T1plot_Dip.cc  Generate Plots of Dipolar T1 versustau
T2plot_Dip.cc  Generate Plots of Dipolar T2 versus tau
T1T2 Dip.cc Classical Dipolar Relaxation Values Table

2.6.1 TheDipolar Interaction Constant

page 20
page 23
page 27

page 19
page 22
page 25

page 34
page 35
page 36

The dipolar interaction constant, E , 1Isused throughout GAMMA. It issimply a scaling factor

which allowsfor independent scali ng of spatial and spin tensors associated with the dipolar Hamil-
tonian (and others). Thoseinterested in its origin must peruse the GAMMA documentation on the
dipolar interaction. Since this constant isimplicit, rather than explicit, to the functions described in

this chapter, we merely present what it is.

ED — _zﬁin%]yl_l

(1-1)

The dipolar interaction constant in not of much consequence unless users wish to calculate related
quantities. For their sake it will now be explicitly calculated for two protons 1A]apanefully

alleviating any problems i in untangling the required unit conversions. Using the values
h = 2mh = 1.05459x 10>*Jsec andYyoron = 2.675x% 10sec!T-1 we have

1. The GAMMA defined dipolar interactions constant is slightly different from the commonly used dipolar

interaction constant. In frequency units, the latter is defined as wD =

Copyright Scott Smith
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£D =2 F@M_W _ F@[(1.05459x 10> 3 sec) (2.675 x 10839(;—11-—1)2}
HH - = _ [o7
5

i 5 4T(1A°)3 2m 10-30m3

—A/3.76991¥[ (1.055x 10" secm3)(7.156 x 10" °sec2T-2)

—1.942;1—;_)[(7.546>< 10%Jsectm3T-2) = %)(1.465>< 10%3sectm3T-2)

Now substituting in the equalities py = 47T 10 " Fsec2C2mL and 1T = 1JCLsec-m2

&hH| . = (2% 10 Jtsec2C-2m1)(1.465 x 10" J-1C2sec3-m)

EBu|,,, = —2.93x 10°secl

Since al spin isotopes (except tritium) have a smaller gyromagnetic ratio than protons and most

atoms will be farther apart than 1A, most Iikﬁ)‘ﬂ <2.93x 10sec! . As distance increases this
value drops dramatically, for example at Z@H = _3.664% 10°sec’t . This is shown in the fol-
lowing figure for some typical spin pa’rrs

Dipolar I nteraction Constant Strengths

3.0 3H -3H: 3,334,392

| 3H - 19F: 2,041,468
'H -1H: 2,930,816
2.0 |

- &.x10° 19F -19F: 2,504,846
1]
1
sec
(5e€) 1.04 3¢ -1H: 736,956
\ 3¢ -13¢c: 185,308
00— — — 77—;;7;; - -

Figure 0-1 Size of the dipolar interaction constant versus distance for various spin pairs. Theval-
uesat 1 A areindicated next to the spin pair label.

1. The GAMMA program which produced this plot is given at the end of this Chapter called Xi_Dip.cc, page
33
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2.6.2 Dipole-Dipole Spin-Lattice Relaxation

We now consider the spin lattice or T, relaxation expected from the dipolar coupling of two spins.
There exist two equations typically found in the iteraturel. The first applies to two unlike spins
(superscript DDU - different chemical shifts) where spin | isrelaxed by spin S.

_ 1 Ho? 1 3 3
RPDU = TPOU - yFy,-Z[EJ h2S(S+ 1)[1—230(w,—w5)+531(w|) +792(0 +u)S)J (1-2)

The second equation applies to two like spins (superscript DDL - equivalent isotope types)

1 3 ,rHo7?
RO = o = [ am) P10+ Do) + (20 @9

Both of these equations contain the dipolar power spectral density functions which are listed be-
low? for the dynamical case of a spherical top undergoing random rotational motion.

Jg(w) = %[T/(1+(wlt)2)] = 6J,(w)

(1-4)
_ 4 _ 16 _
Jy(w) = ﬁ[t/(lﬂw,r)Z)] Jo(w) = —15r6[r/(1+(w|r)2)] = 43,(w)
Upon substitution of the above J(w) equationswe obtain
Ho1% 1 2 6 12
o = o] sl e i e
. YoV am 15r68( ) 1+ (0 —wg)?12 1+ (1)2 1+ (0 +wg)?T?

Ho1? 21 1 4
RDDL = 2 4[—} £L |+1[ " ]
1 W an 5r6( ) 1+(wT)2 1+ (201)2

Asalast step we substitute in the dipolar interaction constant used in GAMMA,

_ _, [Brto W,
& = Zx/zﬂm%lrﬁ

1. See Pulse and Fourier Transform NMR by Thomas C. Farrar and Edwin D. Becker, Academic Press, New
York, New York, 1971. Specifically the two equations are 4.14 and 4.15 on page 55. Also see “Calculation
of Nuclear Spin Relaxation Times” by James L. Sudmeiiea)., Conc. Magn. Reson., 1990, 2, 197-212,
specifically page 198, equations [3] and [6].

2. These can be found in the previously referenced text on page 51, equations 4.9 as well as in EBW on page
56 (although they leave out the distance to the sixth power factor)
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and for working GAMMA eguations we obtain

)[ 2 L6 12 }
1+ (0 —wg)?1? 1+ (wT)? 1+ (W +wg)3T?

2

pou - &°T
RT 7 21TS(S+
(1-5)

€%t 1 4
RPDL = ~—|(1 +1
1 12m (I+ )[1+ (w1)? * 1+ (ZwIT)ZJ

Using these two longitudinal relaxation equations we can easily see how the correlation time af -
fectsdipolar T, times. Thefollowing figure was generated by aGAMMA program1 for atwo spin

system 2A apart. The scalar coupling between the spins set to zero and the spectrometer field
strength put at 500 MHz. Keep in mind that this simple picture assumes that the system moves as
a spherical top with isotropic motion.

1. Thisprogram is listed at the end of this chapter under the name T1plot_Dip.cc, page 34.
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Dipolar Longitudinal Relaxation Times versus Correlation Time

19F relaxed by 3C

6]

13C relaxed by 13 C
4.

In Tl

2]
0

H relaxed by 3H—

*H relaxed by H

[ [ I [
-12 -11 -10 -9 -8

log T

Figure 0-2 Dipolar longitudinal relaxation timesfor several spin pairsversuscorrelationtime. The
distance between the spinswas kept at 2A and thefield strength set to 500 MHz.

We can easily estimate the spin lattice rates under extreme narrowing (EN) conditions. Recall that
for extreme narrowing wt « 1. Inthisinstance our equations (1-5) become
20&21 5821 5821
DDU = &S gy 26t poL| = 2671
Ry ‘EN 721 SS+1)0 241 R ‘EN 121
Obviously, the dipolar relaxation rates in extreme narrowing are directly proportional to %he corre-
|ation time. Using the *H-H dipolar interaction constant at 1 A, £R,,| = —2.93x 10°sec?,
and a correlation time of 1 picosecond, we can directly calculate the sf)i‘h |attice relaxation time
expected in the extreme narrowing limit for the two cases.

5¢%1
I(1+1) 0 2= (1-6)
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- ) -1
DDU| = 20] = ~ . _
7% ey |:24T[E J [24 2.93 x 10°sec?)*1.0 x 10” SeC} 1.76sec

5g277L 5 6 2 12 77t
IT ‘ [16 J [16 (-2.93x 10'sec+)"1.0x 10 sec:| 1.17sec

2.6.3 Dipole-Dipole Spin-Spin Relaxation

We now consider the spin-spin or T, relaxation expected from the dipolar coupling of two spl ns.
For this simple two spin treatment there exists three equations typically found in the literature!.
Thefirst applies to two unlike spins (different chemical shifts) where spin | isrelaxed by spin S
and where there is no resolved scalar coupling between the two spins.

_ 1 Ho7?
e = = Pl a0 it

+ %Jl(w,) + 201 (wg) + 2300 + o |

If there isresolved scalar coupling between the two unlike spins then the rate at which spin | is
relaxed by spin S is given by the following equation.

M
RDDJ = 1%DJ - yzyj[ 0} h2S(S+ 1)[ JO(O)+ Jo(mI Wg)

+ 20, (w) + 303 (wg) + 3wy + o) |

The third equation applies to two like spins (same chemical shift and isotope type)

RDDL = 1

557 = ¥ Dﬂ h2I(I+1)[ J0(0)+ 23 (w) + Jz(zw,)}
2

Assuming that the dipole exhibits spherical top random rotational motion, we may substitutein the
power dipolar spectral densities given in equation (1-4) on page 20.

1. Two of the three equations can be found in the previous reference, Pulse and Fourier Transform NMR by
Thomas C. Farrar and Edwin D. Becker, Academic Press, New York, New York, 1971. Specifically thetwo
equations are 4.16 on page 55 and 4.19 on page 56. In the article “Calculation of Nuclear Spin Relaxation
Times” by J.L. Sudmeier, S.E. Anderson, and J.S. 2gr¢. Magn. Reson., 1990, 2, 197-212, this cor-
responds to pages 198 and 199, equations [4] and [11]. The third equation, that for two unlike spins with
resolved scalar coupling, can be found in EBW on page 504.
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ppu — _1 _ [UOJ 2 T [ 1
2 pou =V 4] M 1ge XSt Y 1+ () — g)?12
,_ 3 ,_ & 6 J
1+(01)? 1+ (wgl)? 1+ (o) +wg)?T?
1 Ho T 1
RDDJ = L1 =2 [ }hZ s+1[4+
2 TDDJ Yoy 15r 156X ) 1+ () — Wg)2T2
+ 3 + 3 + 6 J
1+(1)? 1+ (wgl)? 1+ (o) +wg)?T?

1 Ho T 5 2
RPOL = — = [ th +1[3+ + J
2 TDDL Wlan (4 1+ (1)2 1+ (20wT1)2

Asalast step we substitute in the dipolar interaction constant used in GAMMA,

1 /5:p_ o V;J
2 GTIE"J TE1

For the working GAMMA equations we obtain

1 1
RODU = _1 S+1 [4+
2 THDU 727TS( ) 1+ (0 — Wg) 212
+ 3 + 6 + 6 J
1+(01)? 1+ (wgl)? 1+ (o) +wg)?T?
1 1 3
RPDI = = = S+ [ +
TDDJ 727TS( Y 1+ (0 —wg)212 1+ (w1)2
(1-7)
+ 3 + 6

1+(wgT)? 1+ (W +wg)?T?

1 21 5 2
RDDL=—=—||+1[3+ " }
2 TDDL 247 (=D 1+ (w1)2 1+ (201)2

Using these three equations we can plot the transverse relaxation t| mes, T,, relativeto correlation
times. Thefollowing figurewas generated by aGAMMA program Lforatwo spin system 2A apart.

The scalar coupling between the spins set to zero and the spectrometer field strength put at 500
MHz.

1. Thisprogramislisted at the end of this Chapter under the name T2plot_Dip.cc, page 35.
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Dipolar Transverse Relaxation Time versus Correlation Time

\\\\\ 13C by 13C

19F py H

H by °F
3H by 19F _
9F py °H
14 by 3H _
5 *HbyH -
I I I I I
-12 -11 -10 -9 -8 -7

log 1

Figure0-3 Thedipolar transver serelaxation time expected from a single spin pair. Thefield
strength was 500 M Hz and the distance between spins 2A, and J=0Hz.

We can also estimate the spin-spin rates under extreme narrowing conditions. Recall that for ex-
treme narrowing wt « 1. In thisinstance our equations (1-5) become

_ 20821 5821 _ 1784t 17827
DDU| = DDJ| =
R ‘ 7210 2o XS+ DO 241t R | 7210 Zon ASTH O 96Tt

5821 T, 5821
DDL -
R ‘EN 121 (1+1)0 161

Using the proton-proton dipolar interaction constant at 1 Angstrom, &2 ‘ = 1.465x 10 sec—1
and acorrelation time of 1 picosecond we can directly calculate the spin tAtice relaxation time ex-
pected in the extreme narrowing limit for all three cases.
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T o= [2g2] = [ (—2.03x 10°sec?)?1.0x 10 Zsec| | = 1.76sec
Z‘AX L2410 | | 24Tt i
AP R o ] ! T =
Tz‘ ~x _96T[E T_ = | o6m 2.93 x 10° sec) 1.0x10 sec| = 2.07sec
Resolved J
T, = (5 o] = [ 2 (203 x 1Psec)?10x 10 s | = 11786
2lp, L1610 ] 16T

Notice that in the extreme narrowing limit T, = T, for dipolar relaxation between two spins.

One may also obtain formulae for the transverse relaxation times of the multiple quantum transi-
tionsin atwo spin system. For dipolar relaxation with isotropic random motion equations taken
from the literature® in the AX case with resolved J coupling are the followi ngz.

y -
RDDJ ZQT = g S+1 2 + 3 + 3 J
[Rz™] 72T[S( )_1+[(wl—oo5)T]2 1+(w1)? 1+ (wgl)?
2 —
RODIRT _ &, 1\[a+ 1 .3 ,_ 38 . 6 }
[Rz™] 7ot )| 1+AwfT? 1+(w1)? 1+ (wgl)? 1+ () +wg)?t?
2 —
RDDIPQT = ETgg g 83+ 3 . 12 }
[RZ™] 72T[S( )1+(mIT)2 1+ (wgT)? 1+ [(w) +wg)T]?

We have of course already seen the equation for transverse rel axation of single quantum transitions
(SQT). In the extreme narrowing limit these equations become (for two spin 1/2 particles)

pp3ZQT|  _ 8871 DDJ1SRT 178%t 17821
REIT] = oSS+ D0 1 (RO = s+ )0 T N
ow
ppJPRT|  _ 18821 3821
[RZ™1 ‘EN on XST D0 e

we estimate the relaxation times expected for the multiple quantum transitions of two protons an Angstrom apart in
the extreme narrowing limit.

2771 -1
[TPDI 2T = [E—TJ = [ﬁ(—z.gsx 10°sec1)?1.0 x 1o‘lzsec} = 4.39sec

121
[TDDJ]DQT — [ﬁ}_l _ [i 203 x 106seC'1)210>< 10—125eCJ—1 — 1955
2 1671 16 - -

DDJ1SRT _ 1762Ti|_1 — |:£ _ 6 142 —12 J_l —
[TDDJ] [ - ce-(-293x 105ec1)*1.0x 10 sec] = 2.07sec

1. See Ernst, Bodenhausen, and Wokaun, page 504, below equation (9.4.7).

2. For the A2 system or AX (J=0), multiple guantum coherence does not develop so there are no analogous
equations for the DDL and DDU cases. Furthermore, there is no contribution to longitudinal relaxation
from these transitions so that there are no analogous formulae involving T;.
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Bear in mind that these equations are for two unlike spins (differing chemical shifts) with resolved
scalar coupling values. For two spins with unresolved coupling one can ascertain the analogous
formulas for the single quantum transition transverse relaxation from Abragam’s equations

2.6.4 Dipole-Dipole Relaxation Linewidths

The linewidths expected from dipolar relaxation may be estimated directly from the spin-spin re-
laxation times according to the following relationship.

LWRDP = RPD/mt (1-8)
HereLWRP is used for the line-width at half-height.

2.6.5 Two Spin Approximation

In a multiple spin system one may apply the two spin approximation and assume that the total re-
laxation rate is the sum over all rates from spin pairs. Thus we have the following equation for the
spin-lattice and spin-spin relaxation rates of spin i.

oM 119 oM 119

. . 1 : .
= RPD(j) = RDPD(j, = RPD(i) = RRD(i, 1-9
ro(i) z To(0,) TPO()) - (i) Z 7-(1,]) (1-9)
1>1 1>1
The linewidth for a transition associated with a particular spin would depend By the  estimated
using the two spin approximation.

1
TP (i)

3P 1= 0
LWRP (i) = REP(i)/ 1= ¥ RPO(i, i)/ m
0

j >i
2.6.6 Nuclear Overhauser Effect (NOE)

Consider the spin, i, being relaxed by another spin, j, through a dipolar interaction. Were one to
irradiate at the resonance frequency of spin j for a time such that a steady state is attained the mag-
netization of spin i will be altered due to a redistribution of the Boltzmann populations. This is
called the Nuclear Overhauser Effect (NOE) and placed in terms of the fractional enhancement of
the magnetizationp 2.

Y-|: 6 _ 1 J
L1+ (0 + )22 1+AwET?

Pi = (1-10)

Vi[ 1,3 6 }
1+A03T? 1+ (w1)2 1+ (0o +wy)?T?

1. See Abragam, page 296, equation (89) for the case of unlike spins and see page 292, equation (79) and the
discussion in text on page 297 focused on equation (90) for the treatment of equivalent spins.

2. The equations can be found in the article “Calculation of Nuclear Spin Relaxation Times” by J.L. Sudmeier,
S.E. Anderson, and J.S. Fry@gnc. Magn. Reson., 1990, 2, 197-212, this corresponds to pages 200 and
201.
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Keep in mind that thisformulaprovidesthe fractional enhancement to spini whichisbeing relaxed
through adipolar interaction by spin j. When p; = 0.5 there will be an observed enhancement of
50% in theintegrated intensity of spini. When p; = —1.0 therewill be complete disappearance of
transitions associated with the spin. Maximum NOE enhancement occursin the extreme narrowing
limit, when wt « 1. Under such conditions we have

0.5y,
pi(max) = pi‘EN = v (1-11)
|

In the opposite motional regime, when wt » 1, the minimum NOE is observed (assuming the gy-
romagnetic ratios are the same sign).

. =Y;
pi(min) = pj|__ = 71 (1-12)
|

Thisimplies that for large molecules (proteins), homonuclear decoupling can cause proton reso-
nances to disappear completely. NOE values are also commonly reported in terms of ny e where

Nnoe = 1+p
and then
y.

Nnoe(mMax) = 1+
NOE 2y,

2.6.7 Dipole-Dipole Relaxation Equations

We now group together the important equations regarding athe simple treatment of dipolar relax-
ation.
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Dipolar Relaxation Equations
| nteraction Constant

ED — _ZFE&H%\LJ

Longitudinal Relaxation
(Spin-Lattice)

2 ,_ 6 12 J
1+AwT? 1+ (wT)? 1+ (0 +wg)?T?

Rpov = Lo = Elgsen)|

TDDU ~ 72m

2
RPOL = 1 :E—T||+1)[ L 4 }

- TPDU 121 1+ (0T)2 1+ (201)2
RDDU Extreme 5821 RDDL Extreme 5821
Narrowing 24n 1 Narrowing 161
Transverse Relaxation
(Spin-Spin)
2
RPDU = 1 _ E—TS(S+ 1)[4+ 1 + 3 + 6 + 6 }
TDDU 72T 1+AwAT2 1+ w12 1+ w312 1+ (0 + wg)212
2
RPDJ = 1 gS(S+ 1)[4+ 1 43 L3 . 6 J
TDDJ 721 1+AwhkT?2 1+ w212 1+ w312 1+ (0, + wg)?12
2
RDDL = 1 _ &1 ( 1)[ S 4 2 }
TROL  24m 1+ (w1)2 1+ (201)2
RDDU =N > 2 §21  RDDL _>EN 17 —=—E27 REDL —>—52
2 | =12 24m 2 [ = 96TT 2 = 16m

Copyright Scott Smith June 8, 1998



GAMMA Common Dipolar Relaxation Equations 30
Common Relaxation Equations Dipolar Relaxation Equations 2.5

Dipolar Relaxation Equations
Multiple Quantum Relaxation

oy 2QT _ &1
[RY™] 72_,_[S(S+

)[ 2 ,_ 3 ,_ 3 }
1+[(w-wgy)t]? 1+ (wT)?2 1+ (wel)?

(REoN S = ELg(s )[4+

1 + 3 + 3 + 6 J
7211

1+Aw5T? 1+(wT1)? 1+ (wgl)? 1+ (W +wg)?T?

DQT _ &%1 3 ., 3 N 12

= 7St )[1+(wlt)2 1+ (wgr)? 1+[(00|+0)S)T]2}

[R2>7)

DQT EN 9

EN 8 EN 17
QT 2 SQT =L DDJ —~ g2
[R?™7] |=1/2>96T[E Te [R?PV] |:112> 9611520 [R™1 | =1/2 961'[‘E Te
LineWidth at Half Height
LWDPD = RDD/qg
Two Spin Approximation
spins spins
1 _ N .- 1 _ ppobgiy = DD(; i
= RDPD = RPD(j, — = R 1) = RY"(i,
mogy OO T LRPED gy = RO = 2 FEG)
j>i J>1
I D
;3pins [
LWRP(i) = Ry/m = Ez RQE{T{

|:| J

At this point we apply our formulae for the dipolar relaxation in atwo spin system. The following
tables tabul ate the various rel axation val ues expected for atwo spin system at 500 MHz for differ-
ent internuclear distances and correlation timest. Please note that the T, listed for resolved scalar
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coupling are not computed differently that those without scalar coupling for thistable.

Table 1: Estimated Proton Dipolar Relaxation Times @ 500 MHz

ro| tan | T, T, | W | T, | T, | W | T, T, | Lw
(A) | (se0) | (sec) | (sec) | (Heriz) | (seo) | (se) | (Hertz) | (sec) | (sec) | (Hertz)

H py 1H 14 by 13C Unresolved J 'H by 13C Resolved J

1 1012 1.17041 1.17038 0.27197 27.7660 32.6657 009744 27.7660 27.7659 .011464
101 | 011743 | 117187 2.71626 278012 | 3.26904 097371 278012 | 2.77839 114566
1010 .015491 .013027 24.4351 312858 350218 008892 312858 294789 1.07979
107 .030681 .003335 95.4406 349818 083619 3.80666 349818 .065422 4.86552
108 .289099 .000389 817.435 3.18386 013691 23.2495 3.18386 .013533 23.5207
107 2.88917 3.90e-05 8159.37 31.8066 001388 229.316 31.8066 .001388 229.343

2 1012 74.9061 74.9046 0.00425 1777.03 2090.61 .000152 1777.03 1777.01 .000179
10 7.5155 7.49996 .042442 177.927 209.219 .001521 177.927 177.817 0.00179
1010 .991427 0.83371 .381799 20.0229 22.4139 .014201 20.0229 18.8665 .016872
107 1.96359 0.21345 1.49126 22.3883 5.35163 .059479 22.3883 4.18698 .076024
108 18.5023 .024922 12.7724 203.767 .876226 .363274 203.767 .866122 .367511
107 184.907 .002497 127.490 2035.62 .088838 3.58306 2035.62 .088827 3.58349

3 1012 853.228 853.210 .000373 20241.4 23813.3 1.337e-05 20241.4 20241.3 1.573e-05
10 85.6062 85.4293 .003726 2026.71 2383.13 .000134 2026.71 2025.45 .000157
1010 11.2930 9.49648 .033519 228.074 255.309 .001247 228.074 214.901 .001481
107 22.3665 2.43133 0.13092 255.017 60.9584 .005222 255.017 47.6923 .006674
108 210.753 .283873 112131 2321.03 9.98076 .031892 2321.03 9.86567 .032264
107 2106.21 .028439 11.1925 23187.0 1.01191 .314562 23187.0 1.01179 0.3146

4 1012 4793.99 4793.89 6.64e-05 113730 133799 2.379e-06 113730 113729 2.799e-06
101t 480.992 479.998 .000663 11387.4 13390.0 2.377e-05 11387.4 11380.3 2.797e-05
1010 63.4513 53.3575 005966 1281.47 1434.49 .000222 1281.47 1207.46 .000264
10°° 125.670 13.6608 .023301 1432.85 342.504 .000929 1432.85 267.967 .001188
108 1184.15 1.59499 .199569 13041.1 56.0785 .005676 13041.1 55.4318 .005742
107 11834.1 159791 1.99203 130280 5.68560 .055985 130280 5.68492 .055992

5 1012 18287.6 18287.2 1.74e-05 433844 510402 6.236e-07 433844 433841 7.337e-07
10 1834.84 1831.05 .000174 43439.3 51078.8 6.232e-06 43439.3 43412.4 7.332e-06
1010 242.047 203.543 .001564 4888.41 5472.15 5.817e-05 4888.41 4606.08 6.911e-05
107 479.392 52.1119 .006108 5465.90 1306.55 .000244 5465.90 1022.21 .000311
108 4517.16 6.08439 .052316 49747.8 213.922 .001488 49747.8 211.456 .001505
107 45121.4 .609556 0.5222 496979 21.6888 .014676 496979 21.6862 .014678

Evidently, protons are much more effective at relaxing protons than are carbons. Thisis seenim-
mediately from the calculated linewidths, those in the carbon columns being much smaller than
thosein the proton column. Comparison of the values with and without scalar coupling revealsthat
when scalar coupling is present relaxation occurs more readily than when there isnone. The calcu-
lated linewidths for the column with resolved J are larger than those without J coupling. Keep in
mind that the greatest difference in the times shown result from differences in the gyromagnetic
rations. Since carbon and proton ratios are different by roughly a factor of 4, we roughly see this

1. Thistable and otherslikeit may be produced from the GAMMA program T1T2_Dip.cc provided at the end
of this Chapter, page 36.

Copyright Scott Smith June 8, 1998



GAMMA

Common Dipolar Relaxation Equations

Common Relaxation Equations

Dipolar Relaxation Equations

32
25

factor in comparing proton-proton versus proton-carbon relaxation.

We can compare these proton relaxation values with carbon relaxation values. Under similar con-
ditions, carbon relaxes carbon much more slowly than proton-proton relaxation. On the other hand,

cross relaxation rates are nearly identical.

Table 2: Estimated Carbon Dipolar Relaxation Times @ 500 MHz

r tau T, T, LW T, T, LW T, Ts LW
(A) (sec) | (se0) (sec) | (Hertz) | (sec) (sec) | (Hertz) | (sec) (sec) | (Hertz)
13c by 3¢ 13¢ by IH Unresolved J *3C by 'H Resolved J
1 1012 292.760 292.760 .001087 27.7659 32.6657 009744 27.7659 27.7659 .011464
101 29.2822 29.2783 .010872 2.77935 3.26904 097371 2.77935 2.77878 0.11455
10’10 2.98955 2.95112 107861 304257 350218 908892 .304257 .298769 1.06541
1079 .831761 440185 723127 117404 .083619 3.80666 117404 .080283 3.96486
108 4.61285 .094841 3.35624 523875 .013691 23.2495 523875 .013681 23.2669
107 45.6773 .009756 32.6278 5.16505 .001388 229.316 5.16505 .001388 229.317
2 1012 18736.6 18736.6 1.699e-05 1777.02 2090.61 .000152 1777.02 1777.02 .000179
101 1874.06 1873.81 0.00017 177.878 209.219 .001521 177.878 177.842 0.00179
10'10 191.331 188.872 .001685 19.4724 22.4139 014201 19.4724 19.1212 016647
10°° 53.2327 28.1719 .011299 7.51383 5.35163 .059479 7.51383 5.13809 .061951
108 295.222 6.06983 052441 33.5280 876226 363274 33.5280 .875571 363546
1077 292335 | 0.62437 0.50981 330563 | .088838 3.58306 330.563 .088837 3.58308
3 1012 213422 213422 1.492e-06 20241.4 23813.3 1.337e-05 20241.4 20241.3 1.573e-05
101 21346.7 21343.9 1.491e-05 2026.14 2383.13 .000134 2026.14 2025.73 .000157
1010 2179.38 2151.37 .000148 221.803 255.309 001247 221.803 217.802 .001461
1079 606.354 320.895 .000992 85.5872 60.9584 .005222 85.5872 58.5261 .005439
108 3362.77 69.1392 .004604 381.905 9.98076 .031892 381.905 9.97330 .031916
107 33298.7 7.11197 044757 3765.32 1.01191 314562 3765.32 1.01191 314564
4 10'12 1.20e+06 1.20e+06 2.655e-07 113729 133799 2.380e-06 113729 113729 2.799e-06
1012 119940 119924 | 2.654e-06 | 11384.2 13390.0 | 2.377e05 | 11384.2 113819 | 2.797e-05
1010 12245.2 12087.8 | 2.633e05 | 124624 | 1434.49 .000222 124624 | 122376 0.00026
1079 3406.89 1803.00 .000177 480.885 342.504 .000929 480.885 328.838 .000968
108 18894.2 | 388.469 .000819 214579 | 56.0785 .005676 214579 | 56.0365 0.00568
107 187094 39.9597 .007966 21156.1 | 5.68560 .055985 21156.1 | 5.68556 .055986
5 1012 | 457e+06 | 457e+06 | 6950608 | 433843 510402 | 6.237e07 | 433843 433842 | 7.337e-07
101 457534 457474 6.958e-07 43427.3 51078.8 6.232e-06 43427.3 43418.4 7.331e-06
10’10 46711.7 46111.2 6.903e-06 4754.02 5472.15 5.817e-05 4754.02 4668.26 6.817e-05
10°° 12996.3 6877.90 4.628e-05 1834.43 1306.55 000244 1834.43 1254.42 .000254
108 72075.8 1481.89 .000215 8185.55 213.922 .001488 8185.55 213.762 .001489
107 713707 152.434 .002088 80704.0 21.6888 014676 80704.0 21.6887 014676
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2.7 Dipolar Relaxation Source Codes

Xi_Dip.cc

plots[k] = plot;
k++;

}

}
FM_1Dm(“xiDplot.mif” k,plots,19,14,1,6);

}

Generate Plots of Dipolar Interaction Constants

/** Xi _Dip.cc

EIE R R I R R I R R R R R R R R c++ * *

* %
*x GAMVA Exanpl e Program  **
* % * *

EEEEEE RS S S S SRR RS SR EE SRS E LSS EEEEEEEEEEEEEEEEEEEEEEE T

*/

#include <gamma.h>
main (int argc, char* argv[])

sys_dynamic dsys(2);

int npts = 301;

String types[4];

types[0] = “1H";

types[1] = “3H";

types[2] = “19F";

types[3] = “13C”;

row_vector plot(npts), plots[10];
coord pt(0,0,0);

dsys.put(pt, 0);

matrix xiDs;

double zinc = 5.0e-10/double(npts-1);
int k=0;

for(int is01=0; iso1<4; isol++)

dsys.isotope(0, types[isol]);
for(int iso2=isol; is02<4; is02++)
{
dsys.isotope(1, types[iso2]);
double z = 1.0e-10;
for(int i=0; i<npts; i++)

{

pt.xyz(0,0,2);

dsys.put(pt, 1)

xiDs = xiD(dsys);
plot.put(-1.0*xiDs.get(0,1), i);
Z += zinc;

Copyright Scott Smith

I/ Set up a 2 spin system
/I Use 301 points each xi vs. r
/I Store the isotope types

/I Storage for plots
/I Set the first spin at 0,0,0

/I Matrix for xi values
/I Increment r 5 Angs. total

/I Loop through all isotope pairs
/] Get first isotope

/I Get second isotope

/I Start at 1 Angstrom

/I Loop through all points

/I Set coordinate of 2nd spin

/I Calculate new xi matrix

/I Store new xi value negated
/I Increment distances

/I Store this xi vs. r plot

// Output all plots to FM
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T1plot Dip.cc
Generate Plots of Dipolar T1 versustau

/* Tl p | Ot_Dl p .CC **************************************************************_*_C+ +_*_

*%

*x Example program for the GAMMA Library b
*% *%
** This program constructs a plot of T1 versus tau for a two spin system *x
** the effects of dipolar relaxation. The calculations are performed using a *
** simple analytic formula for the T1 time which assumes that the spin *k

** system motion is that of a spherical top under rotationally diffusive motion. **

*%

Fkkkkkkk *kk

#include <relax_Dip.h>

main (int argc, char* argv[])

cout << “\n\n\t\t\tGAMMA NMR Checking Program”;

Fkkkkkkk *kk */

cout << “\n\t\t Dipolar T1 Relaxation - Two Spin System\n\n”;

sys_dynamic dsys(2);

int npts = 101,

String types[4];

types[0] = “1H";

types[1] = “3H";

types[2] = “19F";

types[3] = “13C";

row_vector plot(npts), plots[12];
coord pt(0,0,0);

dsys.put(pt, 0);

pt.xyz(0, O, 2e-10);
dsys.put(pt, 1);

double bigO;
guery_parameter(argc, argv, 1,

“Spectrometer Frequency (MHz)? “, bigO);

dsys.Omega(bigO);
double Intauinc = 5.0/double(npts-1);
double Intau, tau, T1;
int k=0;
for(int is01=0; iso1<4; isol++)
{
dsys.isotope(0, types[isol]);
for(int is02=0; is02<4; is02++)
{
dsys.isotope(1, typesliso2]);
tau = 1.0e-12;
Intau = -12.0;
dsys.taux(tau);

Copyright Scott Smith

/] Set up a 2 spin system
/I Use 101 points each T1 vs. tau
/I Store the isotope types

/I Storage for plots
/I Set the first spin at 0,0,0

I/l Set coordinate of 2nd spin

/I Set the spectrometer frequency

/I Increment tau 10**5 sec

/I Loop through all isotope pairs
/I Set first isotope

/I Set second isotope

/] Start at 1 psec tau

/I Set tau value of system

for(int i=0; i<npts; i++)

dsys.taux(tau);
T1=T1_DD(dsys, 0);
if(i == 0)
{
cout << “\n” << types[isol]
<< - “ << types[iso2]
<< “initial In(T1) = “
<< log(T1);

else if(i==npts - 1)
cout << “: final In(T1) = *“
<< log(T1);
plot.put(log(T1), i);
Intau += Intauinc;
tau = pow(10.0, Intau);

plots[k] = plot;
k++;

}

}
FM_1Dm(“T1Dplot.mif" k,plots,19,14,-12,-7);

cout << “\n\n”;

}

/I Loop through all points

/I Set tau value of system
/I Calculate new T1 value
/I Output inital and final values
I so plots are discernable

/I Store new T1 value
/I Increment log of tau
// Determine next tau

/I Store this T1 vs. tau plot

/I Output all plots to FrameMaker
/I Keep screen looking nice
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T2plot_Dip.cc
Generate Plots of Dipolar T2 versustau

(This program is nearly identical to T1plot_Dip.cc)

[* T2plot_Dip.cc *riiiitiicickioiokook Kkkkk_*_ G- *.
*% *%
*%

Example program for the GAMMA Library *
*% *%
** This program constructs a plot of T2 versus tau for a two **
** spin system under the effects of dipolar relaxation. The b
** calculations are performed using a simple analytic formula **
** for the T2 time which assumes that the spin system motion bl
** is that of a spherical top under rotationally diffusive **

** motion.

*%

*%
*%

*hkkkkkkhkkkhhkkhhkkhkkkikk

#include <relax_Dip.h>

main (int argc, char* argv[])

cout << “\n\n\tt\tGAMMA NMR Checking Program”;

*hkkkkkkhkkkhhkhhhkkhkrkk */

cout << “\n\t\t Dipolar T2 Relaxation - Two Spin System\n\n”;

sys_dynamic dsys(2);

int npts = 101,

String types[4];

types[0] = “1H";

types[1] = “3H";

types[2] = “19F";

types[3] = “13C”;

row_vector plot(npts), plots[12];
coord pt(0,0,0);

dsys.put(pt, 0);

pt.xyz(0, O, 2e-10);
dsys.put(pt, 1);

double bigO;
guery_parameter(argc, argv, 1,

“Spectrometer Frequency (MHz)? “, bigO);

dsys.Omega(bigO);
double Intauinc = 5.0/double(npts-1);
double Intau, tau, T2;
int k=0;
for(int iso1=0; iso1<4; isol++)
{
dsys.isotope(0, types[isol]);
for(int is02=0; is02<4; is02++)

Copyright Scott Smith

/] Set up a 2 spin system
/I Use 101 points each T2 vs. tau
/I Store the isotope types

/I Storage for plots
/I Set the first spin at 0,0,0

/I Set coordinate of 2nd spin

/I Set the spectrometer frequency

/I Increment tau 10**5 sec

/I Loop through all isotope pairs

/I Set first isotope

{

dsys.isotope(1, types[iso2]);
tau = 1.0e-12;

Intau = -12.0;
dsys.taux(tau);

for(int i=0; i<npts; i++)

dsys.taux(tau);
T2 =T2_DD(dsys, 0);
if(i == 0)
{
cout << “\n” << typesJisol]
<< " - " << types[iso2]
<< *“rinitial In(T2) = “
<< log(T2);

else if(i == npts - 1)
cout << “: final In(T2) =*“
<< log(T2);
plot.put(log(T2), i);
Intau += Intauinc;
tau = pow(10.0, Intau);

}
plots[k] = plot;
k++;

}

}
FM_1Dm(“T2Dplot.mif" k,plots,19,14,-12,-7);
cout << “\n\n”;

/I Set second isotope
/I Start at 1 psec tau

/I Set tau value of system
/I Loop through all points

/I Set tau value of system
/I Calculate new T2 value
// Output inital and final values
/I so plots are discernable

/I Store new T2 value
/I Increment log of tau
/I Determine next tau

/I Store this T2 vs. tau plot

// Output all plots to FrameMaker
/I Keep screen looking nice
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TI1T2 D| p cc cout << “\n\n\tSpin 1: “ << dsys.symbol(0)
— ' << “ Relaxed by Spin 2: “ << dsys.symbol(1)
: H H << “\n\nR\ttauMt T I\t T2\t LWHH";
Classical Dipolar Relaxation Values Table dist = disti:
. t.xyz(0, O, dist); /I Set coordinate of 2nd spin
/* T1T2 DI .cCC ****************************************_*_C++_ *_ p
=P w  dsys.put(pt, 1);
- double T1, T2, LW;
Example program for the GAMMA Library % for(int i=1; i<6; i++) /I Loop over different distances
*% *%
** This program performs a simple calculation of the proton ok dsys_.tgux(taw); _ /f Set initial correlation time
= T1, T2, and linewidth expected from dipolar relaxation in o ]Ea” = _fys'ztfa‘?’x(gj_ p i
** g two spin system. The calculations are performed using a b or(int j=-12; j<-6; j++) Loop over different taus
** simple approximation, the analytical formulas used assume xx << << distl.e10
** the spin system motion is that of a spherical top under ok C°”<t< f\t,,r;:tau.'St €
*% i i i 1 *% )
% rotationally diffusive motion. *k T1=T1_DD(dsys, 0, 1); /I Calculate T1
Fek kKA Fokk */ T2 =T2_DD(dsys, 0, 1); /I Calculate T2
LW = 1.0/(T2*PI); /I Calculate Linewidth from T2
#include <relax_Dip.h> cout << "\’ << T1 << “\t”
— << T2 << " << LW,
main (int argc, char* argv[]) tau *= 10.0; /I Increase tau by 10x

dsys.taux(tau);
cout << “\n\n\t\ttGAMMA NMR Checking Program”;

cout << “\n\t\t Dipolar Relaxation - Two Spin System\n\n”; dist += 1.e-10;
pt.xyz(0, O, dist);

sys_dynamic dsys(2); // Set up a 2 spin system dsys.put(pt, 1);

coord pt(0,0,0); /I Set the first spin at 0,0,0 } .

dsys.put(pt, 0); cout << “\n;

double disti = 1.e-10; /I Start at 1 Angstrom dipole }

double taui = 1.e-12; /I Start at 10**-12 correlation

double tau, dist; /I Used for the actual values

double bigO; /I Set the spectrometer frequency

query_parameter(argc, argv, 1,
“Spectrometer Frequency (MHz)? “, bigO);
dsys.Omega(bigO);

String iso0, iso1l; /I Set up the isotope types

query_parameter(argc, argv, 2, I Get first isotope
“Isotope Type For Spin 1? “, iso0);

dsys.isotope(0, is00); /I Set first isotope

guery_parameter(argc, argv, 3, /I Get second isotope
“Isotope Type For Spin 2? “, isol);

dsys.isotope(1, isol); /I Set second isotope

double Jval = 0.0;

if(iso0 = isol)

guery_parameter(argc, argv, 4, /I Get scalar coupling

“Scalar Coupling Value?”, Jval);
dsys.J(0,1,Jval);

Copyright Scott Smith

I Increase separation by 1 Angs.
/I Reset coordinate of 2nd spin

/I Tidy up output
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3 Common Relaxation Equations

This chapter discusses a GAMMA module that supplies commonly used relaxation equations. In
most cases the equations were derived using a quantum mechanical treatment on a single spin or
spin-pair that is dynamically moving as arandomly diffusing spherical top. In multiple spin sys-
tems the relaxation values returned by these functions employ a sum over spins/ spin pairs.

There are three types of interactions accounted for herein. Another important to relaxation mech-
anism is due to the anisotropic part of the chemical shift Hamiltonian (CSA). Since the energies
involved are dependent on the static field strength, thistype of relaxation becomes more important
asthe field strength increases. Spins having spin angular momentum quantum values larger than
12,1 =1, may posses an appreciabl e electric quadrupole moment which provides an important re-

|axation mechanism.

3.1 Available Relaxation Functions

R1 CC - CSA longitudina relaxation rates

R1 CC max - Maximum CSA longitudinal relaxation rate
R2 CC - CSA transverse relaxation rates
R2_CC_max - Maximum CSA transverse relaxation rate
T1 CC - CSA longitudinal relaxation times

T1 CC_max - Maximum CSA longitudinal relaxation time
T2 CC - CSA transverse relaxation times
T2_CC_max - Maximum CSA transverse relaxation time
Lwhh_CC - CSA half-height linewidths

LWhh_CC_max - Maximum CSA half-height linewidth

3.2 Covered Relaxation Theory

CSA

The CSA Interaction Constant
CSA Spin-Lattice Relaxation
CSA Spin-Spin Relaxation
CSA Relaxation Linewidths
CSA Single Spin Relaxation

3.3 Relaxation Figures

CSA Interaction Constant versus Field Strength
CSA Longitudinal Relaxation Time versus Correlation Time

Copyright Scott Smith

page 39
page 40
page 40
page 41
page 42
page 42
page 43
page 44
page 44
page 45

page 49
page 50
page 52
page 54
page 55

page 50
page 51
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Common Relaxation Equations Relaxation Example Programs 34
CSA Transverse Relaxation Time versus Correlation Time page 53
Estimated Proton CSA Relaxation Times @ 500 MHz page 56
Estimated Fluorine-19 and Carbon-13 CSA Relaxation Times @ 500 MHz page 57
Estimated Nitrogen-15 CSA Relaxation Times @ 500 MHz page 57

3.4 Relaxation Example Programs

Generate Plots of CSA Interaction Constants page 59
T1plot_CSA - Generate Plot of CSA T1 versustau page 59
Generate Table of CSA Relaxation Values page 62
T2plot_CSA - Generate Plot of CSA T2 versus tau- page 61
Copyright Scott Smith June 8, 1998
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3.5 CSA Relaxation

351 R1 CC

Usage:
#include <relax_CSA.h>
row_vector R1_CC(sys_dynamic &dsys);
double R1_CC(sys_dynamic &dsys, int spin);
Description:

The function R1_CC returns a value(s) for the longitudinal relaxation rate expected from chemical shift
anisotropy.

1. R1 CC(sys dynamic &dsys) - The longitudinal relaxation rates of all spinsin the system dsysare re-
turned in arow vector.

2. double R1_CC(spin_sys&sys, int spin) - The longitudina relaxation rate resulting from chemical shift
anisotropy for spin of system dsysis returned.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to bethe first valuelisted dsys. Furthermore, it is assumed that the CSA tensor of each spin
is symmetric.

Return Value:

Either arow vector a adouble precision number is returned.

Examples:
#include <relax_CSA.h>
sys dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe CSA longitudinal relaxation rate of ”
<< *“spin 0is “ << R1_CC(sys, 0); // Output R1 of spin 0
row_vector R1s = R1_CC(sys); /I Get all R1’s in a vector

Mathematical Basis:

For an isotropic spherical top and symmetric shift tensor, the expected CSA longitudinal relaxation
rate is given by equations (2-2) and (2-3) on page 51.

1 21 1 &1 1
RCSA — - 252A02_[—] - _[—}
1 TCSA YE0R9 15 1+ (wr)? AT + (wT)?

Here,Ac is the chemical shift anisotropy é&nd the GAMMA defined CSA interaction constant
as given in Eq. (2-1) on page 49.
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352 R1 CC_max

Usage:
#include <relax_CSA.h>
double R1_CC_max(sys_dynamic &dsys);
Description:
Thefunction R1_CC_max compares the longitudinal CSA relaxation rates of all spin in the system dsys and
returns the largest value. The computation assumes that the system moves as an isotropic manner character-

ized by asingle correlation time. Thisistaken to bethefirst value listed dsys. Furthermore, it is assumed that
the CSA tensor of each spinis symmetric.

Return Value:

A double precision number is returned.

Examples:
#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe fastest CSA longitudinal relaxation rate ”
<< “predicted is “ << R1_CC_max(dsys); /[ Output R1 maximum

Mathematical Basis:

See the discussion for the function R1_CC on page 39.
3.5.3 R2 CC

Usage:
#include <relax_CSA.h>
row_vector R2_CC(sys_dynamic &dsys);
double R2_CC(sys_dynamic &dsys, int spin);
Description:

Thefunction R2_CC returns avalue(s) for the transverse relaxation rate expected from chemical shift anisot-

ropy.

1. row_vector R2_CC(sys dynamic &dsys) - Thetransverse relaxation rates of all spinsin the system dsys
arereturned in arow vector. Each spin isassumed interacting will all other spinsin the system and atwo-
spin approximation is used.

2. double R2_CC(spin_sys &sys, int spin) - The transverse relaxation rate resulting from dipole-dipole in-
teractions for spin of system dsysis returned based on a two-spin approximation.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to bethefirst valuelisted dsys. Furthermore, it isassumed that the CSA tensor of each spin
is symmetric.

Return Value:

Either arow vector a a double precision number is returned.
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Examples:
#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector R2s = R2_CC(dsys); /l Get all R2 values
double R20 = R2_CC(dsys, 0); /I Get R2 value of spin 0

Mathematical Bas's:

For an isotropic spherical top and symmetric shift tensor, the expected CSA transverse relaxation
rate is given by equations (2-6) and (2-7) on page 53.

A R T AT 2am 1+ (wr)2

Here,Ao is the chemical shift anisotropy é&nd the GAMMA defined CSA interaction constant
as given in the Eq. (2-1) on page 49.

354 R2_CC_max

Usage:
#include <relax_CSAn>
double R2_CC_max(sys_dynamic &dsys);
Description:
The function R2_CC_max compares the transverse CSA relaxation rates of all spin in the system dsys and
returns the largest value. The computation assumes that the system moves as an isotropic manner character-

ized by asingle correlation time. Thisistaken to bethefirst valuelisted dsys. Furthermore, it is assumed that
the CSA tensor of each spin is symmetric.

Return Value:

A double precision number is returned.

Examples:
#include <relax_CSA.h>
sys_dynamic dsys; // Set up a dynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe fastest CSA transverse relaxation rate ”
<< “predicted is “ << R2_CC_max(dsys); // Output R2 maximum

Mathematical Basis:

See the discussion for the function R2_CC on page 40.
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3.55 T1 CC
Usage:

#include <relax_CSA.h>

row_vector T1_CC(sys_dynamic &dsys);

double T1_CC(sys_dynamic &dsys, int spin);
Description:

The function T1_CC returns a value(s) for the longitudinal relaxation time expected from chemical shift
anisotropy.

1. T1 CC(sys dynamic &dsys) - The longitudinal relaxation times of all spinsin the system dsys are re-
turned in arow vector. Each spinis assumed interacting will all other spinsin the system and atwo-spin
approximation is used.

2. double T1 CC(spin_sys&sys, int spin) - The longitudinal relaxation time resulting from dipole-dipole
interactions for spin of system dsys s returned based on a two-spin approximation.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation

time. Thisistaken to bethe first valuelisted dsys. Furthermore, it is assumed that the CSA tensor of each spin

is symmetric.

Return Value:

Either arow vector a a double precision number is returned.

Examples:

#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe T1 time for spin 0 is “

<< T1 CC(sys,0); // Output the T1 time of spin O
row_vector T1ls = T1 _CC(sys); /I Get all the T1 times
cout << “\nThe T1 time for spin 1 is “

<< Re(T1s.get(0,1)); /[ Output the T1 time of spin 1

Mathematical Basis:

See the discussion for the function R1_CC on page 39.
3.5.6 T1 CC_max

Usage:
#include <relax_CSAh>
double T1_CC_max(sys_dynamic &dsys);
Description:
Thefunction T1_CC_max comparesthe longitudinal CSA relaxation times of all spin in the system dsys and
returns the largest value. The computation assumes that the system moves as an isotropic manner character-

ized by asingle correlation time. Thisistaken to bethefirst valuelisted dsys. Furthermore, it is assumed that
the CSA tensor of each spin is symmetric.
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Return Value:

A double precision number is returned.

Examples:
#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe largest CSA longitudinal relaxation time ”

<< “predicted is “ << T1_CC_max(dsys); /[ Output T1 maximum
Mathematical Basis:

See the discussion for the function R1_CC on page 39.
357 T2.CC

Usage:
#include <relax_CSAh>
row_vector T2_CC(sys_dynamic &dsys);
double T2_CC(sys_dynamic &dsys, int spin);
Description:

Thefunction T2_CC returns avalue(s) for the transverse relaxation time expected from chemical shift anisot-

ropy.

1. R2_CC(sys _dynamic &dsys) - Thetransverserelaxationtimesof al spinsinthe system dsysarereturned
inarow vector. Each spinisassumed interacting will all other spinsin the system and atwo-spin approx-
imation is used.

2. doubleR2_CC(spin_sys&sys, int spin) - The transverse relaxation time resulting from dipole-dipole in-
teractions for spin of system dsysis returned based on a two-spin approximation.

The computation assumes that the system moves as an isotropic manner characterized by asingle correlation

time. Thisistaken to bethe first valuelisted dsys. Furthermore, it isassumed that the CSA tensor of each spin

iS symmetric.

Return Value:

Either arow vector a adouble precision number is returned.

Examples:
#include <relax_CSA.h>
sys_dynamic dsys; // Set up a dynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector T2s = T2_CC(dsys); /I Get all the T2 times
inti=1, I/l Set a spin index variable
double T2i = T2_CC(dsys, i); I/l Set H in its eigenbasis

Mathematical Basis:;

See the discussion for the function R2_CC on page 40.
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358 T2 CC_max

Usage:
#include <relax_CSA.h>
double T2_CC_max(sys_dynamic &dsys);
Description:
The function T2_CC_max compares the transverse CSA relaxation times of all spin in the system dsys and
returns the largest value. The computation assumes that the system moves as an isotropic manner character-

ized by asingle correlation time. Thisistaken to bethefirst value listed dsys. Furthermore, it is assumed that
the CSA tensor of each spin is symmetric.

Return Value:

A double precision number is returned.

Examples:
#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe largest CSA transverse relaxation time ”
<< “predicted is “ << T2_CC_max(dsys); /[ Output T2 maximum

Mathematical Basis:

See the discussion for the function R2_CC on page 40.

3.5.9 LWhh_CC

Usage:
#include <relax_CSAh>
row_vector LWhh_CC(sys_dynamic &dsys);
double LWhh_CC(sys_dynamic &dsys, int spin);
Description:

The function LWhh_CC returns a value(s) for the linewidths (at half-height) expected from chemical shift
anisotropy.

1. LWhh_CC(sys dynamic &dsys) - The linewidths of al spinsin the system dsys are returned in arow
vector. Each spinis assumed interacting will all other spinsin the system and a two-spin approximation
isused.

2. doubleLWhh_CC(sys_dynamic & sys, int spin) - The linewidth resulting from dipole-dipol einteractions
for spin of system dsysis returned based on a two-spin approximation.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to bethe first valuelisted dsys. Furthermore, it is assumed that the CSA tensor of each spin
is symmetric.

Return Value:

Either arow vector a double precision number is returned.
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Examples:
#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
double LW = LWhh_CC(dsys, 0); /Il Set LW to CSA line width of spin O
row_vector LWs = LWhh_CC(dsys); /Il Get all CSA linewidths

Mathematical Bas's:

The line-width at half-height is related to the transverse relaxation rate by the simple formula
LWSGHA = RESAY/ = 1/(nTSSA)

3510 LWhh _CC_max

Usage:
#include <relax_CSAn>
double LWhh_CC_max(sys_dynamic &dsys, int spinl);
Description:
The function LWhh_CC_max considers the expected linewidths due to CSA relaxation of all spininthe sys-
tem dsys and returns the maximum value. The computation assumes that the system moves as an isotropic

manner characterized by asingle correlation time. Thisistaken to bethefirst value listed dsys. Furthermore,
it is assumed that the CSA tensor of each spin is symmetric.

Return Value:

A double precision number is returned.

Examples:
#include <relax_CSA.h>
sys_dynamic dsys; // Set up a dynamic system
dsys.read(“filename.sys”); /l Read in system from file

cout << “\nThe maximum linewidth expected “
<< “from CSA relaxation is “
<< LWhh_CC_max(dsys); /I Output the max. CSA linewidth

Mathematical Bass:

The line-width at half-height is related to the transverse relaxation rate by the simple formula

LWSSA = RESA/ T = 1/(TITSSA)
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3511 xiCSA

Usage:

#include <relax_CSA.h>

matrix XiCSA(sys_dynamic &dsys);

double xiCSA(sys_dynamic& sys, int i);

matrix XiCSA(spin_system &sys, double* CSASs);
double xiCSA(spin_system &sys, int i, double CSA);

Description:

This function xiCSA calculates the GAMMA defined CSA interaction constant as given in the CSA Hamil-
tonian presented in the Eq. (2-1) on page 49. It relates to the chemical shift anisotropy according to

_ 18
ECh = legwiBvoi

1. xiCSA(sys dynamic &dsys) - The dynamic spin system dsys furnishes all components needed for the
calculation over all spinsin the system. A diagona matrix whose elements contain the xi values for the

system spinsis returned.

2. XxiCSA(sys dynamic &dsys, inti) - Asin the previous function, the dynamic spin system dsys furnishes
all components needed for the calculation. In this case the interaction constant for the spini is returned.

3. XxiCSA(spin_system & sys, double* CSA) - Thisfunction is similar to thefirst form but obtains the field
strength and gyromagnetic ratios from the input spin system sys. The values of the chemical shift anisot-
ropy AC areinput in the double precision vector and assumed to be in PPM.

4. XxiCSA(spin_system &sys, inti, double CSA) - Thisfunction also obtainsthefield strength and gyromag-
netic ratio of spin i from the input spin system sys. The value of the chemical shift anisotropy AG i Is

input as a double precision number assumed to be in PPM.

Return Value:

Either arow vector or adoubleis returned.
Example(s):

#include <relax_CSA.h>
sys dynamic dsys;
dsys.read(“filename.sys”);
matrix xis = xiCSA(dsys);
double xi0 = xiCSA(dsys, 0);
sys_dynamic sys;
sys.read(“filename.sys”);
double xi = xiCSA(sys, 0, 50);
double csas[sys.spins()];
for(int i=0; i<sys.spins(); i++)
csas|i] = 50.0 +i*10.0;
xis = XiCSA(sys, csas);

Scott Smith June 8, 1998

Il Set up adynamic system
/l Read in system from file
// Matrix of CSA interaction consts.
/[l CSA interaction const. spin 0
I/l Set up a spin system
/l Read in system from file
/l CSA int. const. spin 0 w/ 50 PPM
/I Set up vector of CSAs
Il Fill up vector with CSA values

// Reset matrix to new xi values
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3512 CSA
Usage:

#include <relax_CSA.h>
row_vector CSA(sys_dynamic &dsys);
double CSA(sys_dynamic& sys, int i);

Description:

This function CSA returns the chemical shift anisotropy value(s) for the spinsin the system.

1. CSA(sys_dynamic &dsys) - The dynamic spin system dsys contains any spatial shielding tensors as-
signed to the spinsin the system. A row vector containing the CSA values (PPM) of these tensorsisre-
turned.

2. CSA(sys dynamic &dsys, inti) - The CSA valuein PPM for the spini of system dsysis returned.
Return Value:

Either arow vector or adoubleis returned.

Example(s):
#include <relax_CSA.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nThe CSA of spin 0 is “
<< CSA(dsys, 0) << “ PPM"; // Output the CSA of spin O
row_vector CSAs = CSA(dsys); /Il Get all the system CSA values

Mathematical Bas's:

The anisotropy of the shielding tensor is defined to be

3
w) = 3% = 9= 90

_ 1
Ao = 0,,— E(OXX +0
The last relationship uses the nomenclature applicable in describing a symmetric CSA tensor with

n = 0,whereo, = 0, anby = 0,, =0

2z X yy
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3.6 CSA Relaxation Discussion

For convenience the following lists the sections, figures, tables, and example GAMMA programs

contained in this Chapter.

3.6.0.1 CSA Rdaxation Sections

The CSA Interaction Constant
CSA Spin-Lattice Relaxation
CSA Spin-Spin Relaxation
CSA Relaxation Linewidths
CSA Single Spin Relaxation

3.6.0.2 CSA Relaxation Figures

CSA Interaction Constant versus Field Strength
CSA Longitudina Relaxation Time versus Correlation Time
CSA Transverse Relaxation Time versus Correlation Time

3.6.0.3 CSA Relaxation Tables

Estimated Proton CSA Relaxation Times @ 500 MHz
Estimated Fluorine-19 and Carbon-13 CSA Relaxation Times @ 500 MHz
Estimated Nitrogen-15 CSA Relaxation Times @ 500 MHz

3.6.0.4 CSA Relaxation Example Programs

Generate Plots of CSA |nteraction Constants
T1plot_CSA - Generate Plot of CSA T1 versustau
Generate Table of CSA Relaxation Values
T2plot_CSA - Generate Plot of CSA T2 versus tau-

Scott Smith June 8, 1998

page 49
page 50
page 52
page 54
page 55

page 50
page 51
page 53

page 56
page 57
page 57

page 59
page 59
page 62
page 61
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3.6.1 The CSA Interaction Constant

The CSA interaction constant, 54, is used throughout GAMMA. It is simply a scaling factor
which allows for independent scaling of spatial and spin tensors associated with the chemical shift
anisotropy Hamiltonian (and others). Those interested in its origin must peruse the GAMMA doc-
umentation on the shift anisotropy interaction. Since this constant isimplicit, rather than explicit,
to the functions described in this chapter, we merely present what it is.

ECSA /\/7Y| zz(l) (2'1)

The CSA interaction constant in not of much consequence unless users wish to calculate related
quantities. For their sakeit will now be explicitly calculated. Thefirst thing to noteisthat the factor
Y;B,, issimply the Larmor frequency for isotope i, in the case of aproton thisis the spectrometer
frequency Qgpec -

61 Yi . _ JemYi .
ECSA ,\/7Y| zz(l) yl;Qspecézz(l) - Ey_lz Qspec,vézz(l)

For a proton in a 500MHz spectrometer with a d,, value of 1 Part Per Million (PPM) we have

Vs, 0
= J@B—qun(soo x 10°Hz)] (1/ 106)
500MHz 5 Vy,0
1PPM
= /3.77(1)[ 21(500H2)] = (1.942)(3.142 x 10°sec1) = 6.100 x 10°sec-?

A more typical value would result from an anisotropy, Ac , of 150 PPM for a carbon nucleus'.

CSA — 6')'[D/13CD 6 6\ — _ 5 1
&3 = 21 [—[—[P00 x 10" Hz(100/10°) = 2m./37.7125.7Hz = 1.534 x 10" sec
€ |500MHz 5 ¥y, 0
150PPM

That the CSA interaction constant is linearly dependent on field strength2 is shown below.

1. Notethat Ac = 150 impliesthat d,, = 100 as discussed in the paragraph following the figure.
2. This plot was generated with the program Xi_CSA.cc given at the end of this Chapter, page 59.
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CSA Interaction Constant versus Field Strength

Y 5,, = 100 PPM

1.0 -
0.8 -

ECAx 106 0.6
-1

Sec
( ) 0.4 1
0.2 1
3,, = 10 PPM

O ] T T T T
0 200 400 600 800

Q (MHz2)

Figure0-4 CSA interaction constant relativeto the applied field strength and the anisotropy.

Keep in mind that the magnitude of &~ depends upon the field strength present. Pure CSA re-
laxation rates are proportional &2 and thus proportional to the field strength squared. It is also of
interest to note that the d,, valueis not the chemical shift anisotropy (CSA), Ao, although the two
values are related. The following relationship is useful in discerning aproper o,, valueto be used
in GAMMA.

35

1
Ao = ozz—é(oxx+oyy) = 5

z = c)-||_0-I]
Thelast relationship used the nomencl ature applicablein describing asymmetric CSA tensor with
n = 0,whereo, = 0, and oy = 0, = 0Oy,.

3.6.2 CSA Spin-Lattice Relaxation

We now consider the spin lattice or T, relaxation expected from the CSA of a spin. An equation
commonly found in the literature ist.

1 21 1 2T 1
RESA = —2= = V2BR(0) - 00)29| T | = ¥2BjA0?y ——| 2.2
1 T](?SA Y O( [ |:|) 15 1+ (w_[)z Y 0 15 1+ (w_[_)z ( )

which applies to a spin having a symmetric shielding tenor - atensor with n = 0 or equivaently
witho, = 0, and o = 0,, = 0,,. Alsothisequation isrestricted to the dynamical case of a
spherical top undergoing ranJom rotational motion. Replacing Ao first with (3/2)d,, and sub-
sequently putting the formulainto GAMMA nomenclature using the CSA interaction constant

1. See Pulse and Fourier Transform NMR by Thomas C. Farrar and Edwin D. Becker, Academic Press, New
York, New York, 1971. Specifically this equation is 4.28 on page 59. Also see “Calculation of Nuclear Spin
Relaxation Times” by James L. Sudmeetral., Conc. Magn. Reson., 1990, 2, 197-212, specifically page
202, equation [35].
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csA = _ 1  _ opo 22[;} — Eﬁ[;} )
RI TESA VBodz1g 1+ (wr)2] 4T+ (wr)? =3

Thislongitudinal relaxation equation predicts how the correlation time affects T, times based on
the chemical shielding anisotropy. The following figure was generated by a GAMMA program
for aproton in afield strength of 500 MHz. Keep in mind that this simple treatment assumes that
the system containing the spin moves as a spherical top with isotropic motions. Furthermore note
that for small values of T where wt « 1 (the extreme narrowing condition), R{SA increases and
T$SA decreaseslinearly with the correlations time: asthe molecule beginsto slow, T increases, the
relaxation rate increases, and the relaxation time becomes shorter. The opposite is true when we
arefar away from the extreme narrowing, when wt » 1. Then, asthe molecule further slowsdown
(heading toward asolid) CSA no longer provides anice longitudinal relaxation pathway. It isthen
T$SA which increases linearly with 1. It takes longer for longitudinal relaxation to occur.

CSA Longitudinal Relaxation Time versus Correlation Time

19F{100,50,10}
-12 11 -10 -9 -8
EN log 1 EB

Figure 0-5 Natural log of the CSA longitudinal relaxation time versusthe base 10 log of the corre-
lation time. The applied field strength was set to 500 MHz. Theisotopesare noted with
the d,,delz valuesindicated in brackets. The shaded portion to the |eft isthe Extreme

1. Thisfigure was produced by the GAMMA program listed at the end of this chapter, T1plot CSA.cc, page
59.
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Narrowing (EN) region Where wrt « 1 and therelationship islinear. Linear behavior is
also seen in the shaded area on theright (EB) where wt » 1.

We can estimate the spin | attice CSA relaxation rate under extreme narrowing (EN) conditions. Re-
call that for extreme narrowing wt « 1. In these instances, equation (2-3) becomes

S :

Ry |EN 4Tt 4
and it is apparent that the relaxation rate is proportional to the correlation time. Using the CSA in-
teraction constant previously cal Clél| ated for a13C nucleuswith field strength of 500 MHz and a 5,
of 100 PPM, £CSA = 1,534 x 10”sec™1, and a correlation time of 1 picosecond we can directly
calculate the spin lattice relaxation time expected in the extreme narrowing limit.

=]
} = 534 sec= 8.9 min

TE - [&T _ [(1.534x 10°sec)1.0 x 10 “sec
Lolen  L4m 4m

Notice that this correspondsto In(TSSA) = 6.28 for 13C at 8,, = 100 which can be seenin the
previous plot. The other end of the motional spectrum occurs when wt » 1 but at common field
strengths where w (1108 we would need extremely slow motion; slower than most large proteins
which are moving at T 110-8. Under such circumstances, the motion is not likely to beisotropic.
We shall label thisregime as EB, and

RCSA| P E'_Z [l} (2-5)
1 ole 7 4u?mlT

3.6.3 CSA Spin-Spin Relaxation

We now consider the spin-spin (transverse) or T, relaxation expected from the CSA of aspin. For
this simple treatment there exists an equation typically found in the literaturel.,

RCA = _ L — \2R2(g. _g zl[Lw} = ZBZAGZL[L‘F”} (2-6)
77 = e = VBO(O1= 00 50 T o2 YRR848 1+ (won)?

Again, this applies to a spin having a symmetric shielding tenor - atensor with n = 0 or equiva
lently with o = 0,, and 0; = 0,, = 0,, -itisrestricted to the dynamical case of a spherical
top undergoing random rotational motion. Replacing Ac with (3/2)d,, produces

1 T 3
RCSA — - 2B252 _[ + 4}
2 TE’SA Y°B§ z9() 1+ ((A)T)Z

1. Also found in the previous reference, Pulse and Fourier Transform NMR by Thomas C. Farrar and Edwin
D. Becker, Academic Press, New York, New York, 1971. Specifically see equation are 4.29 on page 59. In
the article “Calculation of Nuclear Spin Relaxation Times” by J.L. Sudmeier, S.E. Anderson, and J.S. Frye,
Conc. Magn. Reson., 1990, 2, 197-212, this corresponds to page 203, equation [36].
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and we now place theformulainto full GAMMA nomenclature using the CSA interaction constant.

RGSA = 1 = g2t

3
4 .
TGSA 24T[[1 + (1) + J (2-7)

We now show graphically how T, varieswith correlation ti me in accordance with equation (2-7).
The figure below appliesto a single spin system at 500 MHZzL.

CSA Transverse Relaxation Time versus Correlation Time

~ °N{1050,100}

19F{10,50,100}

-9

-12 -11 -8

-10
log T
Figure 0-6 Natural log of the CSA transverserelaxation time versusthe base 10 log of the correla-

tion time. The applied field strength was set to 500 MHz. Theisotopes are noted with
the 5,, valuesindicated in brackets.

Under extreme narrowing, wt « 1, the spin-spin CSA relaxation rateis

CA| = L g2 -
R e 24nE ! (2-8)
Using the CSA interaction constant previously calculated for a 13C nucleus with field strength of
500 MHzandad,, of 100 PPM, §¢5A = 1.534 x 10 ®sec1, and acorrelationtime of 1 picosecond
we can directly cal culate the spin lattice relaxation time expected in the extreme narrowing limit.

-1
TgSA J = 458 sec= 7.6 min

_ [—22 | e [(1'53“ 10°sec)7.0 x 10 sec

‘EN 241t 2410

Notice that this correspondsto In(T$SA) = 6.13 for 13Cat 8,, = 100 which can be seen in the
previous plot. If we compare the longitudinal and transverse relaxation times in the extreme nar-

1. Thisfigure was produced by the GAMMA program listed at the end of this Chapter, T2plot_CSA.cc, page
61.
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rowing limit, the inverses of equations (2-4) and (2-8), we see the well know ratio of 7/6.

7
CSA CSA g2
e Ry - 278 _8n 7 29
TS RESA £2r  24m 6
EN EN E

In the extreme narrowing limit, CSA transverse relaxation occurs slightly faster than longitudinal
relaxation; the transverse relaxation time is alittle shorter than the longitudinal relaxation time.

3.6.4 CSA Relaxation Linewidths

The linewidths expected from CSA relaxation may be estimated directly from the spin-spin relax-
ation times according to the following relationship.

LWSGHA = RESAY/ = 1/(nTSSY) (2-10)
Here LWSS is used to indicate the CSA related line-width at half-height.

3.6.5 CSA Relaxation Equations

We now group together the important equations regarding a the simple treatment of CSA relax-
ation.
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CSA Relaxation Equations

| nteraction Constant

_ Jem . _ ferYi iy = [ i
E.CSA = /\/%yiBoézz(l) - E\/_;Qspecézz(l) - EVT;ZTEQSPGQV@Z(I)

Longitudinal Relaxation
(Spin-Lattice)

ResA = 1 _ &[ 1 J Extreme £21
! TlCSA 41ml1+ (wr)2] Narrowing ATt

Transverse Relaxation

(Spin-Spin)

R R 3 Extreme 7821
R = L =gl 3 ., B
TESA 2411 + ()2 Narrowing 241

Linewidth at Half-Height
LWﬁhSA = RZCSA/ n=1/ (T[TZCSA)
Extreme Narrowing Ratio

TR/ TESA| =

[e)R N

Chemical Shift Anisotropy

1 3
Ac = 0-zz_é(o-xx-i-o-yy) = 2622 = 9,790

3.6.6 CSA Single Spin Relaxation
Thefollowing tabl el tabulates the CSA relaxation parameters and linewidths expected for aproton

1. Thistable was generated from the program T1T2_CSA.cc listed at the end of this Chapter, page 62. The
output from the program was placed into this document as atable (in FrameM aker) by first placing the pro-
gramoutput into afilethenimporting it asan ASCI| file. Theimported text isthen converted into a Format
B Table with the paragraphs treated as cells using 1 or more blank spaces as a cell. This new table isthen
unconverted (another Table option: convert to paragraphs) in acolumn by column fashion. This procedure
allows a table ASCII output from the program as well as facile generation of the table in this text! It isn’t
as difficult as it sounds.
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at afield strength of 500.12 MHz.

Table 3: Estimated Proton CSA Relaxation Times @ 500 MHz

5 (PPM) | Ao (PPM) tau k! T2 LW,
2z (sec) (sec) (sec) (Hertz)
666667 1 1012 759552 651041 4.88925¢-07
101 76029.4 65131.3 4.8872e-06
1010 8345.44 6771.17 4.70096¢-05

10°° 8259.54 1065.81 .000299

108 75075.9 113.845 .002796

107 750008 11.3931 .027939
6.66667 10 1012 7595.52 6510.41 4.88925¢-05

101 760.294 651.313 .000489

1010 83.4544 67.7117 .004701

10°° 82.5954 10.6581 .029866

108 750.759 1.13845 279599

107 7500.08 .113931 2.79389

33.3333 50 1012 303.821 260.416 .001222

1011 30.4118 26.0525 012218

1010 3.33818 2.70847 117524

10°° 3.30382 426323 0.74664

108 30.0304 045538 6.98997

107 300.003 004557 60.8472

66.6667 100 1012 75.9552 65.1041 .004889

101 7.60294 6.51313 .048872

1010 834544 677117 470096

10°° 825054 .106581 2.98656

108 7.50759 .011385 27.9599

107 75.0008 .001139 279.389

Normally, proton anisotropy values are very small. Thisis not true for other common nuclei in
NMR. For comparison, the tables below contains the same cal culated values for fluorine, carbon,
and nitrogen atoms. The proton field strength is kept at 500 MHz athough the appropriate Larmor
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frequency for the particular isotope will be the value ultimately utilized in equations.

Table 4: Estimated Fluorine-19 and Carbon-13 CSA Relaxation Times @ 500 MHz

622 AG tau Tl T2 LWhh
(PPM) | (PPM) | (sec) (sec) (sec) (Hertz)
Carbon 13
666667 1 1012 1.20129e+07 | 1.02968e+07 | 3.09136e-08
101 1.20136e+06 1.0297e+06 3.09128e-07
1010 120879 103242 3.08314e-06
10°° 19512.9 12327.4 2.58213e-05
108 76201.3 1780.88 .000179
107 750120 180.171 .001767
6.66667 10 1012 120129 102968 3.09136e-06
101 12013.6 10297.0 3.09128e-05
1010 1208.79 1032.42 .000308
10°° 195.129 123.274 .002582
108 762.013 17.8088 017874
107 7501.20 1.80171 0.17667
33.3333 50 1012 4805.15 4118.70 7.7284e-05
101 480.545 411.881 .000773
1010 48.3515 41.2968 .007708
10°° 7.80515 4.93096 064553
108 30.4805 0.71235 446845
107 300.048 072069 4.41676
66.6667 100 1012 1201.29 1029.68 .000309
101 120.136 102.970 .003091
1010 12.0879 10.3242 .030831
10° 1.95129 1.23274 258213
108 7.62013 .178088 1.78738
107 75.0120 .018017 17.6670

Table 5: Estimated Nitrogen-15 CSA Relaxation Times @ 500 MHz

5 (PPM) | Ao (PPM) tau k! T2 LW,
z (sec) (sec) (sec) (Hertz)
33.3333 50 1012 29566.4 25342.6 1.25603e-05

101 2956.67 2534.27 .000126

1010 295.964 253.536 .001255

10°° 32.5664 26.3842 .012064

108 32.9566 4.15536 .076602

300.296 443168 0.71826
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Table 5. Estimated Nitrogen-15 CSA Relaxation Times @ 500 MHz

tau T T LW
522 (PPM) Ao (PPM) 1 2 hh
(sec) (sec) (sec) (Hertz)
66.6667 100 1012 7391.59 6335.65 5.02411e-05
101t 739.167 633.568 .000502
1010 73.9909 63.3840 .005022
10°° 8.14159 6.59606 048258
108 8.23916 1.03884 306409
107 75.0739 110792 2.87304
Copyright Scott Smith June 8, 1998



GAMMA
Decoupling

Common Relaxation Equations
Shift Anisotropy Source Codes

3.7 Shift Anisotropy Source Codes

Xi_CSA.cc
Generate Plots of CSA Interaction Constants

/** XI_CSACC kkkkkkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk C++
*%

*%

GAMMA Example Program
*%

** This program loops through spins (1H) of differing chemical shift

** anisotropies and examines their corresponding GAMMA defined CSA
** interaction constants, xi, versus field strength. Plots are output

** t0 a single file called xiCSAplot.mif produced in FrameMaker .mif

** format. Each plot contains 301 points where the spectrometer

** frequency spans [0, 1000] MHz.

*%

#include <relax_CSA.h>
main ()

int ns=4; /l Number of spins
sys_dynamic sys(ns); /I Construct a spin system
sys.delz(0, 1);

sys.delz(1, 10);

sys.delz(2, 50);

sys.delz(3, 100);

int npts = 300;

row_vector plot(npts), plots[ns];
double Ominc = 1.0e3/double(npts-1);
double xi; /I For the Xi CSA value
for(int spin=0; spin<ns; spin++)

/I and this is kept in PPM

/I Set the # points per plot
/I Storage for plots

{
double Om = 0.0; /I Initial Omega at 0 MHz
for(int i=0; i<npts; i++)
{
sys.Omega(Om);
Xi = sys.XiCSA(spin);
plot.put(xi, i);
Om += Ominc;

/I Set the field strength
/I Get Xi for CSA spin
/I Store Xi CSA

}
plots[spin] = plot;
}

FM_1Dm(*xiCSAplot.mif”, ns, plots, 19.0, 14.0, 0.0, 1000.0);
}

Copyright Scott Smith

/I Set the delz values for each

I/l Increment the field strength

*%
*%

*%
*%
*%
*%*
*%
*%
*%
*%
*%

/I Increment Omega to 1000 MHz
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3.7
T1plot_CSA.cc
T1plot CSA - Generate Plot of CSA T1 versustau

[* T1plot_CSA.cc ***xxxkiik Hoxx ok *EK-C++- *.
*% *%
*%
Example program for the GAMMA Library *x
*% *%
** This program constructs a plot of T1 versus tau for a single *x
** spin system under the effects of Chemical Shift Anisotropy *k
** (CSA) relaxation. The calculations are performed using a *x
** simple analytic formula for the T1 time which assumes that *x
** spin motion is that of a spherical top under rotationally *x
** diffusive motion. It is also assumed that the shift tensor **

** js axially symmetric.
*%

*%
*%

*hkkkkkkhrkkhkhkhhkkhhrkhhrk *

#include <relax_CSA.h>

main (int arge, char* argv[])

cout << “\n\n\t\t\tGAMMA NMR Checking Program”;

*kkkkkkkhkkkhhkkhrhk */

cout << “\n\t\t CSA T1 Relaxation - Single Spin System\n\n”;

sys_dynamic dsys(1);
dsys.Omega(500.0);
int npts = 101;

String types[4];
types[0] = “1H";
types[1] = “13C";
types[2] = “15N”;
types[3] = “19F";
double delzz[3];

delzz[0] = 10;
delzz[1] = 50;
delzz[2] = 100;

row_vector plot(npts), plots[16];
double taui = 1.e-12;

double Intauinc = 5.0/double(npts-1);

double Intau, tau, T1;

int k=0;
for(int iso=0; iso<4; iso++)
{
dsys.isotope(0, types[iso]);
for(int dz=0; dz<3; dz++)
{

/] Set up a 1 spin system

/I Set Omega to 500 MHz.

/I Use 101 points each T1 vs. tau
/I Look at 4 isotope types

/I Set up 3 delzz values

/I Storage for plots
/l Start at 10**-12 correlation
/I Increment tau 10**5 sec

/I Loop through all isotopes

/I Set spin isotope type
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dsys.delz(0, delzz[dz]); /I Set system delzz
tau = 1.0e-12; /l Start at 1 psec tau
Intau = -12.0;
for(int i=0; i<npts; i++) /I Loop through all points
dsys.taux(tau); /I Set tau value of system
T1 =T1_CC(dsys, 0); /I Calculate new T1 value
if(i==0) // Output initial & final values
{ /I to screen so plots discernable
cout << “\n” << typesJiso]
<< *-*“ << dsys.delz(0);
cout << “:initial In(T1) = “ << log(T1);
else if(i == npts-1)
cout << “, final In(T1) = “ << log(T1);
plot.put(log(T1), i); /I Store new T1 value
Intau += Intauinc; /I Increment log of tau
tau = pow(10.0, Intau); /I Determine next tau
}
plots[k] = plot; /I Store this T1 vs. tau plot
k++;
}}
FM_1Dm(“T1Cplot.mif” k,plots,19,14,-12,-7); /l Output all plots to FrameMaker
cout << “\n\n”; /I Keep screen nice
}
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SA dsys.delz(0, delzz[dz]); /I Set system delzz
Tlpl Ot—C .CC tau = 1.0e-12; /l Start at 1 psec tau
Intau = -12.0;
T2pl Ot—CSA Generate Plot of CSA T2 versus tau for(int i=0; i<npts; i++) /I'Loop through all points

% R e s e e e e e e e e e e e e s i - *_
i* T2plot_CSA.cc CH+ o dsys.taux(tau); /I Set tau value of system
o T2 =1.0/T2_CC(dsys, 0); /I Calculate new T2 value
Example program for the GAMMA Library % if(i==0) /I Output initial & final values
*k *k { /I to screen so plots discernable

** This program constructs a plot of T2 versus tau for a single
** spin system under the effects of Chemical Shift Anisotropy
** (CSA) relaxation. The calculations are performed using a
** simple analytic formula for the T2 time which assumes that
** spin motion is that of a spherical top under rotationally

** diffusive motion. It is also assumed that the shift tensor

** js axially symmetric.

*%

KRKKKKKKKRKRRKRRKRKRRR KRRk RRkRhkhkhhkkhkkhhkkhkhkkhkkhkhkkhkkhkkkkkhkkkkkkkkkkkkkkkkkkkk */
#include <relax_CSA.h>
main (int argc, char* argv[])
cout << “\n\n\t\t\tGAMMA NMR Checking Program”;
cout << “\n\t\t CSA T2 Relaxation - Single Spin System\n\n”;
sys_dynamic dsys(1); /] Set up a 1 spin system
dsys.Omega(500.0); /I Set Omega to 500 MHz.
int npts = 101; /I Use 101 points each T2 vs. tau
String types|[4]; /I Look at 4 isotope types
types[0] = “1H";
types[1] = “13C";
types[2] = “15N”;
types[3] = “19F";
double delzz[3]; /I Set up 3 delzz values
delzz[0] = 10;
delzz[1] = 50;
delzz[2] = 100;
row_vector plot(npts), plots[16]; /I Storage for plots
double taui = 1.e-12; /I Start at 10**-12 correlation
double Intauinc = 5.0/double(npts-1); /I Increment tau 10**5 sec
double Intau, tau, T2;
int k=0;
for(int iso=0; iso<4; iso++) /I Loop through all isotopes
dsys.isotope(0, types[iso)); /] Set spin isotope type
for(int dz=0; dz<3; dz++)
{
Copyright Scott Smith

cout << “\n” << types[iso] << “ - “ << dsys.delz(0);
cout << “:initial In(T2) = “ << log(T2);
}
else if(i == npts-1)
cout << *, final In(T2) = “ << log(T2);

plot.put(log(T2), i); /I Store new T2 value
Intau += Intauinc; /I Increment log of tau
tau = pow(10.0, Intau); /I Determine next tau
plots[k] = plot; /I Store this T2 vs. tau plot
k++;
}
FM_1Dm(“T2Cplot.mif" k,plots,19,14,-12,-7); /I Output all plots to FrameMaker
cout << “\n\n"; /I Keep screen nice

}
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T1T2 CSA cc delzz = 2.0*DELzz[i]/3.0; /I Determine delzz
— ' dsys.delz(0, delzz); /I Set system delzz
; dsys.taux(taui); /I Set initial correlation time
Generate Table of CSA Relaxation Values a0 = dsys.aN0);
J£ TAT2_ CSA.CC *rrrsnsmmmstk s oK AR, X * fcir(lnt j=-12; j<-6; j++) /I Loop over different taus
*% *%
o R1 = R1_CC(dsys, 0); /I Calculate R1
; % R2 = R2_CC(dsys, 0); /I Calculate R2
Example program for the GAMMA Library - T1=1.0RL 1l Caloulate T1 from RL1
** Thi ; ; T2 =1.0/R2; /I Calculate T2 from R2
i This program performs a simple calculation of the T1, T2, LW = R2/PI: 1l Calculate Linewidth from R2
** inewidths associated with a single spin having CSA. The *x cout<<*\n"<<delzz /I Output in form which can be
** calculations are performed using a simple treatment and only *x << << DELZ2[]] <<"it" << tau f placed into a FrameMaker table
** chemical shift anisotropy interactions is considered. The * << << T1< A << T2 <<t
** gnalytical formulas used assume the spin system motion is *x << ';‘iV _
** that of a spherical top under rotationally diffusive motion. b tau *=10.0; /ncrease tau by 10x
** They also assume an axially symmetric chemical shift tensor. b ?Sy&faux(ta“)'
*% *%

*kkkkkkk *kk *k* */
cout << “\n\n”;
#include <relax_CSA.h> }

main (int argc, char* argv[])

cout << “\n\n\t\ttGAMMA NMR Checking Program”;
cout << “\n\t\t CSA Relaxation - Single Spin System\n\n”;

sys_dynamic dsys(1); /I Set up a 1 spin system
double bigO; /I Set the spectrometer frequency
guery_parameter(argc, argv, 1,

“Spectrometer Frequency (MHz)? “, bigO);
dsys.Omega(bigO);
String iso; /I Set the isotope type
guery_parameter(argc, argv, 2,

“Spin Isotope Type? *, iso);

dsys.isotope(0, iso);

double DELzz[4]; /I Set up 4 DELzz values
DELzz[0] = 1;

DELzz[1] = 10;

DELzz[2] = 50;

DELzz[3] = 100;

double tau, delzz; /I Variables for tau and delzz
double taui = 1.e-12; // Start at 10**-12 correlation

double R1,R2,T1,T2,LW;
cout << “\n\ntCSA Relaxation of “
<< dsys.symbol(0) << “\n”;
cout << “\ndelzz\tDELzz\ttau”
<< “MTIMT2UtLWHH";
for(int i=0; i<4; i++) /I Loop over the 4 DELzz values
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/I Tidy up output
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4.1

4  Quadrupolar Relaxation Equations

This chapter discusses a GAMMA module that supplies commonly used quadrupolar relaxation

equations. In most cases the equations were derived using a quantum mechanical treatment on a
single spin that is dynamically moving as arandomly diffusing spherical top. Quadrupolar relax-
ation applies only to spins having spin angular momentum quantum values larger than 1/2, | > 1.
These spins may posses an appreciabl e electric quadrupole moment which provides an important

rel axation mechanism.

4.1 Available Quadrupolar Relaxation Functions

R1 QQ - Quadrupolar longitudinal relaxation rates:
R2 QQ - Quadrupolar transverse relaxation rates:
T1 QQ - Quadrupolar longitudinal relaxation times:
T2 QQ - Quadrupolar transverse relaxation times:
LWhh_QQ - Quadrupolar haf-height linewidths:

LWhh_QQ _max - Maximum Quadrupolar half-height linewidth:

4.2 Covered Quadrupolar Relaxation Theory

The Quadrupolar Interaction Constant
Quadrupolar Spin-L attice Relaxation
Quadrupolar Transverse Relaxation
Quadrupolar Relaxation Linewidths
Quadrupolar Relaxation Equations
Quadrupolar Single Spin Relaxation

4.3 Quadrupolar Relaxation Figures

Quadrupolar Longitudinal Relaxation Time versus Correlation Time
Quadrupolar Transverse Relaxation Time versus Correlation Time
Quadrupolar Relaxation Equations

4.4 Quadrupolar Relaxation Example Programs

T1plot_Q - Generate Plot of Quadrupolar T1 versus tau
T2plot_Q - Generate Plot of Quadrupolar T1 versus tau
T1T2_Q - Generate Table of Quadrupolar Relaxation Values
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4.5 Quadrupolar Relaxation

451 R1.QQ

Usage:
#include <gamma.h>
row_vector R1_QQ(sys_dynamic &dsys);
double R1_QQ(sys_dynamic &dsys, int spinl);
Description:

The function R1_QQ returns avalue(s) for the longitudinal relaxation rate expected from quadrupolar relax-
ation.

1. R1 _QQ(sys dynamic &dsys) - Thelongitudinal relaxation rates of all spinsin the system dsys are re-
turned in arow vector.

2. double R1_QQ(spin_sys&sys, int spin) - The longitudinal relaxation rate resulting from el ectric quadru-
pole moment for spin spin of system dsysis returned.

The computation assumes that the system moves as an isotropic manner characterized by asingle correlation
time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Examples:

#include <relax_Quad.h>

sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector R1s = R1_QQ(sys); /I Vector of relaxation rates
double R10 = R1_QQ(sys, 0); /I Relaxation rate of spin 1

Mathematical Basis:

For an isotropic spherical top the expected quadrupolar longitudinal relaxation rate is given below.

RQ = = = (21+3)(2l —1)({@)2%)[14,9_2}[ 1, 4 }

TR 311+ (wr)2 1+ (2wT)?
_ [_3t(21+3) n2r__2 8
[4OOI2(2I —1)JQCC2[1+ 3 J[1+ (wr)? * 1+ (ZQ)T)Z:|
45.2 R2 QQ

Usage:

#include <gamma.h>
row_vector R2_QQ(sys_dynamic &dsys);
double R2_QQ(sys_dynamic &dsys, int spinl);
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Description:

Thefunction R2_QQ returns avalue(s) for the transverse rel axation rate expected from chemical shift anisot-

ropy.

1. R2_QQ(sys _dynamic &dsys) - Thetransverserelaxation rates of all spinsin the system dsysarereturned
inarow vector. Each spinisassumed interacting will al other spinsin the system and atwo-spin approx-
imation is used.

2. double R2_QQ(spin_sys &sys, int spin) - The transverse relaxation rate resulting from quadrupolar in-
teractions for spin spin of system dsysis returned based on a two-spin approximation.

The computation assumes that the system moves as an isotropic manner characterized by asingle correlation

time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Examples:
#include <relax_Quad.h>
sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector R2s = R2_QQ(sys); /I Vector of relaxation rates
double R20 = R2_QQ(sys, 0); /I Relaxation rate of spin 1

Mathematical Basis:
For an isotropic spherical top the expected quadrupolar transverse relaxation rate is.

RY = 1=(2|+3)(2|—1)(EQ)2%)[1+D—2J[3+ T }

_8 3 1+ (wr)2 1+ (2wr)2
_ [_St(21+3) n2 5 2
[400I 2(21 - 1)JQCC2[1 T3 J[fﬂ * 1+ (wr)? * 1+ (ZQ)T)Z:|
45.3 T1 QQ

Usage:
#include <gamma.h>

row_vector T1_QQ(sys_dynamic &dsys);
double T1_QQ(sys_dynamic &dsys, int spinl);

Description:

The function T1_QQ returns a value(s) for the longitudinal relaxation time expected from chemical shift

anisotropy.

1. T1 QQ(sys dynamic &dsys) - Thelongitudinal relaxation times of al spinsin the system dsys are re-
turned in arow vector. Each spin is assumed interacting will all other spinsin the system and atwo-spin
approximation is used.

2. double T1 QQ(spin_sys&sys, int spin) - The longitudinal relaxation time resulting from quadrupolar
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interactions for spin spin of system dsys s returned based on a two-spin approximation.

The computation assumes that the system moves as an isotropic manner characterized by asingle correlation
time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a adouble precision number is returned.

Examples:
#include <relax_Quad.h>
sys dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector T1ls = T1_QQ(sys); /I Vector of relaxation times
double T10 =T1_QQ(sys, 0); /I Relaxation time of spin 1

Mathematical Bass:

For an isotropic spherical top and symmetric shift tensor, the expected quadrupolar longitudinal re-
laxation time is

o= 1 - _1)(EQ)2L1 4 1AL 4
Ry TQ (21 +3)(21 = DE) 20[1+ 3}[1+(00T)2+1+(200T)2}

) [43(; 22(|2-IFEI)JQCC2[1 * n?ﬂ[l + (Zu)T)2 * 1+ (gwt)z}

454 T2 0QQ

Usage:
#include <gamma.h>

row_vector T2_QQ(sys_dynamic &dsys);
double T2_QQ(sys_dynamic &dsys, int spinl);

Description:

Thefunction T2_QQreturns avalue(s) for the transverse relaxation time expected from chemical shift anisot-

ropy.

1. R2_QQ(sys dynamic&dsys) - Thetransverserelaxationtimesof all spinsinthe systemdsysarereturned
inarow vector. Each spinisassumed interacting will all other spinsin the system and atwo-spin approx-
imation is used.

2. double R2_QQ(spin_sys &sys, int spin) - The transverse relaxation time resulting from quadrupolar in-
teractions for spin spin of system dsysis returned based on a two-spin approximation.

The computation assumes that the system moves as an isotropic manner characterized by asingle correlation

time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.
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Examples:

#include <relax_Quad.h>

sys _dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector T2s = T2_QQ(sys); /I Vector of relaxation times
double T20 = T2 _QQ(sys, 0); /I Relaxation time of spin 1

Mathematical Bas's:

For an isotropic spherical top and symmetric shift tensor, the expected quadrupolar transverse re-
laxation time is

_1 1 > :
R8 = 15 = @+ @2 -DEp[1+ F[3r B 2]

=[4§8|22(|27—3)1)JQCCZ[1 J[ 1+(wr)2+1+(§wr)2}

455 LWhh_QQ

Usage:

#include <gamma.h>
row_vector LWhh_QQ(sys_dynamic &dsys);
double LWhh_QQ(sys_dynamic &dsys, int spinl);

Description:
The function LWhh_QQ returns a value(s) for the linewidths (at half-height) expected from chemical shift
anisotropy.

1. LWhh_QQ(sys dynamic &dsys) - The linewidths of all spinsin the system dsys are returned in arow
vector. Each spin is assumed interacting will al other spinsin the system and a two-spin approximation
isused.

2. double LWhh_QQ(spin_sys &sys, int spin) - The linewidth resulting from quadrupolar interactions for
spin spin of system dsysis returned based on a two-spin approximation.

The computation assumes that the system moves as an i sotropic manner characterized by asingle correlation
time. Thisistaken to be the first value listed dsys.

Return Value:

Either arow vector a a double precision number is returned.

Examples:

#include <relax_Quad.h>

sys_dynamic dsys; /I Set up a dynamic system
dsys.read(“filename.sys”); /l Read in system from file
row_vector LWs = LWhh_QQ(sys); /I Vector of quadrupolar linewidths
double LWO = LWhh_QQ(sys, 0); /l Linewidth of spin 1
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Mathematical Bas's:

The line-width at half-height is related to the transverse relaxation rate by the ssimple formula
LWR, = R/t = 1/(nTQ)

4.5.6 LWhh_QQ_max

Usage:

#include <gamma.h>
double LWhh_QQ_max(sys_dynamic &dsys);

Description:

Thefunction LWhh_QQ_max returnsalinewidth for the spin is system dsyswhich is relaxing the most rap-
idly due to quadrupolar effects. The computation assumes that the system moves as an isotropic manner char-
acterized by asingle correlation time. Thisis taken to be the first value listed dsys.

Return Value:

A double precision number is returned.

Examples:
#include <relax_Quad.h>
sys dynamic dsys, /I Set up adynamic system
dsys.read(“filename.sys”); /l Read in system from file
cout << “\nMax Linewidth: “
<< LWhh_QQ_max(sys); // Output the max linewidth

Mathematical Bass:

The line-width at half-height is related to the transverse relaxation rate by the simple formula
LWR, = R/t = 1/(nTQ)

457  xiQ

Usage:

#include <gamma.h>
row_vector xiQ(sys_dynamic &dsys);
double xiQ(spin_systemé& sys, int i);

Description:

This function xiQ calcul ates the quadrupolar interaction constant according to

Q = F{ e4Q  _ F QCC
&= B an@,—Dh 4522 -1)

1. xiQ(sys_dynamic &dsys) - The dynamic spin system dsys furnishes all components needed for the cal-
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culation over al spinsin the system. A vector contains the xi values for each spinis returned.

2. XxiQ(spin_sys&sys, inti) - Asin the previous function, the dynamic spin system dsys furnishes all com-
ponents needed for the calculation. In this case the interaction constant for the spini is returned.

Return Value:

Either arow vector or adoubleis returned.

Example:
#include <gamma.h>
sys dynamic dsys, /I Set up adynamic system
dsys.read(“filename.dsys”); /l Read in system from file
row_vector Xis = xiQ(dsys); /I Get all the system quad. xi values
double Xi0 = xiQ(dsys, 0); /I Get 1st spins quad xi value

45.8 QCC

Usage:

#include <gamma.h>
row_vector QCC(sys_dynamic &dsys);
double QCC(spin_system& sys, int i);

Description:

This function QCC provides access to spin system quadrupolar coupling constants according to
QCC; = e2q,Q,

1. QCC(sys dynamic &dsys) - The dynamic spin system dsys stores and maintains these coupling con-
stants. A vector containing the coupling constant values is returned.

2. QCC(spin_sys&sys, inti) - Asinthe previousfunction, the dynamic spin system dsys furnishes all cou-
pling constant values. In this case the constant for the spinii is returned.

Return Value:

Either arow vector or adoubleis returned.

Example:
#include <gamma.h>
sys_dynamic dsys; // Set up a dynamic system
dsys.read(“filename.dsys”); // Read in system from file
row_vector Qs = QCC(dsys); /I Get system quad. coupling values
double QO = QCC(dsys, 0); /I Get 1st spins quad coupling value
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4.6 Quadrupolar Relaxation Discussion

For convenience the following lists the sections, figures, tables, and example GAMMA programs

contained in this Chapter.

4.6.0.1 Quadrupolar Relaxation Sections

The Quadrupolar Interaction Constant
Quadrupolar Spin-L attice Relaxation
Quadrupolar Transverse Relaxation
Quadrupolar Relaxation Linewidths
Quadrupolar Relaxation Equations
Quadrupolar Single Spin Relaxation

4.6.0.2 Quadrupolar Relaxation Figures

Quadrupolar Longitudinal Relaxation Time versus Correlation Time
Quadrupolar Transverse Relaxation Time versus Correlation Time
Quadrupolar Relaxation Equations

4.6.0.3 Quadrupolar Relaxation Tables

Estimated Quadrupolar Relaxation Times @ 500 MHz

4.6.0.4 Quadrupolar Relaxation Example Programs

T1plot_Q - Generate Plot of Quadrupolar T1 versus tau
T2plot_Q - Generate Plot of Quadrupolar T1 versus tau
T1T2_Q - Generate Table of Quadrupolar Relaxation Values

Scott Smith June 8, 1998

page 71
page 71
page 73
page 74
page 75
page 75

page 72
page 74
page 75

page 76

page 77
page 78
page 79

Section 79



GAMMA Quadrupolar Relaxation Equations 71
Liquid Relaxation Quadrupolar Relaxation Example Programs Function: 4.4

4.6.1 The Quadrupolar Interaction Constant

The quadrupolar interaction constant, &2, is used throughout GAMMA. It is simply ascaling fac-
tor which allowsfor independent scaling of spatial and spin tensors associated with the quadrupol ar
Hamiltonian (and others). Those interested in its origin must peruse the GAMMA documentation
on the quadrupolar interaction. Since this constant isimplicit, rather than explicit, to the functions
described in this chapter, we merely present what it is.

_ [em__QCC
& = Ezli(zli—l) e

The quadrupolar interaction constant in not of much consequence unless users wish to calculate
related quantities. For their sake it will now be explicitly calculated for several species. We first
consider the relaxation of deuterium.

QCC; 6Tt

S A _ QCCo fom
& = 21.(21,-1)\' 5

= (0.971)QCC,
H

The aromatic deuterons on benzene-dg and the methyl deuterons on toluene-ds which have quadru-
polar coupling constants of 193 and 165 kHz respectivelyl.

£8), , = (0971)2m(193 10°Hz) = 1.177 x 10°sec1

Eg‘(b o, = (0971)2m(165 x 10°Hz) = 1.006 x 10°sec-?
- 3

Another example would be value would be 35¢C! in tri methyl tin chloride which as a quadrupolar
coupling constant of 29.0 MHz. The corresponding quadrupolar interaction constant is then?.

QCC; 6Tt

so - _9CC fon| _ _2m(29x 1PH7)  fem _ m(29x 106Hz)J@
Yo T 22— 5| T 23223/ )-1N 5 3 5
Cl
g9 = M2 "3106HZ)(1.942) = 2,033 29% 16Hz) = 58.96x 18sect

4.6.2 Quadrupolar Spin-Lattice Relaxation

We now consider the spin lattice or T, relaxation expected from the electric quadrupole of aspin.
An equation commonly found in the literature is

2
i Ti%’ i [45&(22('273)1)}[(32??(]} [“ n3_2}[1 + (Zwt)2 1% (gwf)ZJ

1. Taken from Ando, Gerig, and Weigand, JACS, 104, 11, (1982) 3172-3178.
2. See “Calculation of Nuclear Spin Relaxation Times” by James L. Sudete#r, Conc. Magn. Reson.,
1990, 2, 197-212, specifically page 209.
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which appliesto adynamical case of aspherical top undergoing random rotational motion. Putti ng
thisformulafirst in terms of the quadrupolar coupling constant

R = -I-_lg = [%JQCCZ[1+D§J[1+5M)Z+l+(2(DT)2}

into GAMMA nomenclature using the quadrupolar interaction constant yields

1 _ lry,.n’ 1 4 :
RQ = = (21 +3)(21 - 1)(E)?5 [1+3}[1+(m)2+1+(2m)4 (3-2)

Thislongitudinal relaxation equation predicts how the correlation time affects T, ti mes based on
the electric quadrupole. The following figure was generated by a GAMMA program for various
nuclei at with three differing quadrupolar coupling constants. Keep in mind that this simple treat-
ment assumes that the system containing the spin moves as a spherical top with isotropic motions.

Quadrupolar Longitudinal Relaxation Time versus Correlation Time
209Bi[100HZ, 50kHz, 10MHZ]

2H[100Hz, 50kHz, 10MHZ]

-12 -11 -10 -9 -8
log T

Figure 0-7 Natural log of thequadr upolar longitudinal relaxation timever susthebase 10log of the
correlation time. Thefield strength was 500 MHz & isotopes are noted with QCC val-
ues bracketed.

Notethat for small valuesof T where wt « 1 (the extreme narrowing condition), RQ increases and
T decreases linearly with the correlations time: as the molecule begins to slow, T increases, the
relaxation rate increases, and the relaxation time becomes shorter. The opposite is true when we

1. See “Calculation of Nuclear Spin Relaxation Times” by James L. Sudete#r, Conc. Magn. Reson.,
1990, 2, 197-212, specifically page 201, equation [25].
2. This figure was produced by the GAMMA program T1plot_QQ.cc listed at the end of this chapter.
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arefar away from the extreme narrowing, when wt » 1. Then, asthe molecul e further slowsdown
(heading toward a solid) the electric quadrupole no longer provides a nice longitudinal relaxation
pathway. It is then T{ which increases linearly with T. W e can estimate the spin lattice quadru-

polar relaxation rate under extreme narrowing (EN) conditions. Recall that for extreme narrowing
wT « 1. In these instances, equation (3-2) becomes

_ [31(21+3) n% - _ ir, . n? )
RPlen [40|2(2|—1)}QCCZ[1+3J (21 +3)(21 -1 1+ T 9

and it is apparent that the relaxation rate is proportional to the correlation time. Using the quadru-
polar coupling constant previously calculated for a2H nucleusin tol uene-dz assuming an axially
symmetric quadrupole tensor and a correlation time of 1 picosecond we can directly calculate the
spin lattice relaxation time expected in the extreme narrowing limit.

TQ

-1
o = [%?JQC@ = [g(lx 10-125ec) 4T12( 165 X 103H2)J = 2481 sec

‘EN

Notice that this correspondsto In(TQ) = 0.91 for 2H which can be roughly estimated from the
previous plot.
4.6.3 Quadrupolar Transverse Relaxation

We now consider thetransverseor T, relaxation expected from the electric quadrupole moment of
aspin. For this simple treatment there exists an equation typically found in the literaturel.

2
RY = Tig - [43(;(22('273)1)}[(32??(1} [l * 03_1[3 "Is (Scm)2 "Is ém)z} 549

Again, thisisrestricted to the dynamical case of a spherical top undergoing random rotational mo-
tion. Putting in the quadrupolar coupling constant we have

and we now place the formulainto full GAMMA nomenclature using the quadrupolar interaction
constant.

0o-1 _ _1)(£Q)2L[1+ 17 5 2 i
R2 T9 (21+3)( = 1E 20[1+ 3}[3+1+(mr)2+1+(2mt)2J &9

We now show graphically how T, varieswith correlation time in accordance with equation (3-5).
The figure below appliesto asingle spin system at 500 M HZ2.

1. Also found in the previous reference, “Calculation of Nuclear Spin Relaxation Times” by J.L. Sudmeier,
S.E. Anderson, and J.S. Fry@gnc. Magn. Reson., 1990, 2, 197-212, this corresponds to page 201, equa-
tion [26].
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Quadrupolar Transverse Relaxation Time versus Correlation Time
209Bj[100HZ, 50kHz, 10MHZ]

10_ '
InT, ,l sy
o AV

< T ==

2H[100Hz, 50kHz, 10MHZ]

12 11 10 JogT -9 8

Figure 0-8 Natural log of the quadrupolar transver serelaxation time ver susthe base 10 log of the
correlation time. The applied field strength was set to 500 MHz. The isotopes are noted
with the QCC valuesindicated in brackets.

Under extreme narrowing, wt « 1, the transverse quadrupolar relaxation rate is

= M)_ D_Z — _ l_ D_Z ]
Ry = Laorzca oy QO L+ 5 ] = @@ -nEo4[1+ L] o

and comparison of this equation with that for RY|  revealsthat they are equivalent. Thusin the
extreme narrowing limit, according to thei nverseSof equations (3-3) and (3-6)

Plew - Mlen _ @)
T%‘EN R:I(})‘EN

4.6.4 Quadrupolar Relaxation Linewidths

The linewidths expected from quadrupolar relaxation may be estimated directly from the trans-
verse relaxation times according to the following relationship.

LWR, = R®/m = 1/(nTY) (3-8)
Here LW, isused to indicate the quadrupolar related line-width at half-height.

2. Thisfigure was produced by the GAMMA program listed at the end of this chapter, T2plot_QQ.cc, page
78.
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4.6.5 Quadrupolar Relaxation Equations

We now group together the important equations regarding a the simple treatment of quadrupolar
relaxation.

Quadrupolar Relaxation Equations
I nteraction Constant
S f_n_mf?
! 5 21,(21; - 1) 5 21,(21;— 1) 5 1,(21;—1)

Longitudinal Relaxation
(Spin-Lattice)

2
RQ = L - +3)2- 1)(EQ)2%)[1 + %}[1 + (];DT)Z ¥ 1+ (goot)z}

- [43& 22(|2731)}QCCZ[1 ’ nﬂ[l ¥ (Zwr)Z "1s (gwr)ZJ

Transverse Relaxation

= i = = i n—z 5 2
RQ w5 (21 +3)(2] 1)(EQ)220[1+ 3J[3+1+(m)2+1+(2m)2}

- [43& Zz(lszl)}QCCZ[l * DS_Z} [3 * 1+ (Smr)2 i 1+ (gwr)ZJ

Linewidth at Half-Height

LWS, = R¥/ 1t = 1/(TTQ)
Extreme Narrowing
g ) 2
R](?‘ — Rg‘ — |: 31(21+3 :|QCCz|:1+ n_:|
EN EN  L4012(21 -1) 3

4.6.6 Quadrupolar Single Spin Relaxation
The following tabl el tabulates the quadrupolar relaxation parameters and linewidths expected at a
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field strength of 500.12 MHz.

Table 6: Estimated Quadrupolar Relaxation Times @ 500 MHz

QCC | tau LEt To LWhn
(kHz) | (sec) (sec) (sec) (Hertz)
1=3/2 (3°Cl)
1 1012 253303 253303 1.25664e-06
101 25331.1 25330.6 1.25662e-05
1010 2541.19 2536.14 .000126
10°° 332.061 280.899 .001133
108 638.710 71.7828 .004434
1077 6004.09 8.42714 037772
100 1012 25.3303 25.3303 012566
101 2.53311 2.53306 .125662
1010 254119 253615 1.25509
10°° .033206 0.02809 11.3318
108 063871 .007178 44.3434
107 .600409 .000843 377.720
1000 1012 .253303 .253303 1.25664
1011 025331 025331 12.5662
1010 .002541 .002536 125.509
10°° .000332 .000281 1133.18
108 .000639 7.17828e-05 4434.34
107 .006004 8.42714e-06 37772.0
10,000 1012 .002533 002533 125.664
101 .000253 .000253 1256.62
1010 25411905 | 2.53615e-05 12550.9
10°° 3.32061e-06 | 2.80899e-06 113318
108 6.3871e-06 7.17828e-07 443434
107 6.00409e-05 | 8.42714e-08 | 3.7772e+06

1. Thistable was generated from the program T1T2_QQ.cc listed at the end of this Chapter. The output from
the program was placed into this document as atable (in FrameMaker) by first placing the program output
into afile then importing it as an ASCII file. The imported text is then converted into a Format B Table
with the paragraphs treated as cells using 1 or more blank spaces as a cell. This new table is then uncon-
verted (another Table option: convert to paragraphs) in acolumn by column fashion. This procedurealows
a table ASCII output from the program as well as facile generation of the table in this text! It isn’t as dif-
ficult as it sounds.
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4.7 Quadrupolar Source Codes

T1plot_Q - Generate Plot of Quadrupolar T1 versus tau

/* Tlplot_Q.cc e H-Ctt- *-
*% *%
*x Example program for the GAMMA Library *x
*% *%
** This program constructs a plot of T1 versus tau for a single *
** spin system under the effects of quadrupolar relaxation. *
** The calculations are performed using a simple analytic *x
** formula for the T1 time which assumes that spin motion is *x
** that of a spherical top under rotationally diffusive motion. *

*%

*%

Fkkkkkkk

#include <relax_Quad.h>

main (int argc, char* argv[])

{
cout << “\n\n\t\ttGAMMA NMR Checking Program”;

Fkkkkkkk *kk */

cout << “\n\t\tQuadrupolar T1 Relaxation - Single Spin System\n\n”;

sys_dynamic dsys(1);
dsys.Omega(500.0);
int npts = 101;

String types[4];
types[0] = “2H";
types[2] = “35CI";
types[1] = “170";
types[3] = “209Bi";
double QCC[3];
QCC|0] = 100;
QCC[1] = 50000;
QCC[2] = 10000000;

row_vector plot(npts), plots[16];
double taui = 1.e-12;

double Intauinc = 5.0/double(npts-1);
double Intau, tau, T1;

int k=0;

for(int iso=0; iso<4; iso++)
{
dsys.isotope(0, types[iso]);
for(int dz=0; dz<3; dz++)

{
dsys.Qdelz(0, QCC[dz));

Copyright Scott Smith

/I Set up a 1 spin system
/I Set Omega to 500 MHz.
/I Use 101 points each T1 vs. tau
/I Look at 4 isotope types
/I Deuterium (1=1)

/I Chlorine (1=3/2)

/I Oxygen (1=5/2)

/I Bismuth (1=7/2)

/I Set up 3 QCC values
/1100 Hz

/1 50 kHz

/1 10 MHz

/I Storage for plots

/I Start at 10**-12 correlation
/I Increment tau 10**5 sec

/I Loop through all isotopes

/I Set spin isotope type

/I Set system QCC

tau = 1.0e-12;
Intau = -12.0;
for(int i=0; i<npts; i++)

dsys.taux(tau);
T1=T1_QQ(dsys, 0);
if(i == 0)

{

/I Start at 1 psec tau
/I Loop through all points

/I Set tau value of system

/I Calculate new T1 value

/I Output initial & final values

// to screen so plots discernable

cout << “\n” << typesJiso] << “ - “ << dsys.Qdelz(0);

cout << “:initial In(T1) = “ << log(T1);

else if(i == npts-1)
cout <<, final In(T1) = “ << log(T1);
plot.put(log(T1), i);
Intau += Intauinc;
tau = pow(10.0, Intau);

}
plots[k] = plot;
k++;

}

}
FM_1Dm(“T1Qplot.mif" k,plots,19,14,-12,-7);
cout << “\n\n”;

}

// Store new T1 value
/I Increment log of tau
/I Determine next tau

/I Store this T1 vs. tau plot

/I Output all plots to FrameMaker
/I Keep screen nice
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T2plot_Q - Generate Plot of Quadrupolar T1 versus tau

/** Tlplot_Q.CC Kkkkkkkk *kkk *_CH+-
*k

*%

Example program for the GAMMA Library
*%

** This program constructs a plot of T1 versus tau for a single
** spin system under the effects of quadrupolar relaxation.

** The calculations are performed using a simple analytic

:: formula for the T1 time which assumes that spin motion is

** that of a spherical top under rotationally diffusive motion.

*%

*%

*%
*%
*%
*%*
*%

*%
*%

KRKKKKKKKKRKRRKRKRKRRR KRRk KRR R Rk R hkkkhhkkhkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkk */
#include <relax_Quad.h>
main (int argc, char* argv[])
cout << “\n\n\t\t\t GAMMA NMR Checking Program”;
cout << “\n\t\tQuadrupolar T2 Relaxation - Single Spin System\n\n”;
sys_dynamic dsys(1); /] Set up a 1 spin system
dsys.Omega(500.0); /I Set Omega to 500 MHz.
int npts = 101; /I Use 101 points each T2 vs. tau
String types([4]; /I Look at 4 isotope types
types[0] = “2H"; /I Deuterium (I=1)
types[2] = “35CI"; /I Chlorine (1=3/2)
types[1] = “170"; /I Oxygen (1=5/2)
types[3] = “209Bi"; /I Bismuth (1=7/2)
double QCC[3]; /I Set up 3 QCC values
QCCJ0] = 100; /1 100 Hz
QCC[1] = 50000; /1 50 kHz
QCC[2] = 10000000; // 10 MHz
row_vector plot(npts), plots[16]; /I Storage for plots
double taui = 1.e-12; /I Start at 10**-12 correlation
double Intauinc = 5.0/double(npts-1); /I Increment tau 10**5 sec
double Intau, tau, T2;
int k=0;
for(int iso=0; iso<4; iso++) /I Loop through all isotopes
{
dsys.isotope(0, types]iso]); /I Set spin isotope type
for(int dz=0; dz<3; dz++)
{
dsys.Qdelz(0, QCC[dz]); /I Set system QCC
tau = 1.0e-12; /I Start at 1 psec tau
Intau = -12.0;
for(int i=0; i<npts; i++) /I Loop through all points
Copyright Scott Smith

dsys.taux(tau);
T2 =T2_QQ(dsys, 0);
if(i == 0)

{

/I Set tau value of system

/I Calculate new T2 value

/l Output initial & final values

/I to screen so plots discernable

cout << “\n” << types][iso] << “ - “ << dsys.Qdelz(0);

cout << “: initial In(T2) = “ << log(T2);
}
else if(i == npts-1)
cout << “, final In(T2) = *“ << log(T2);
plot.put(log(T2), i);
Intau += Intauinc;
tau = pow(10.0, Intau);

plots[k] = plot;
k++;

}

}
FM_1Dm(“T2Qplot.mif" k,plots,19,1,-12,-7);
cout << “\n\n”;

/I Store new T2 value
/I Increment log of tau
/I Determine next tau

/I Store this T2 vs. tau plot

/I Output all plots to FrameMaker
/I Keep screen nice
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TIT2_Q - Generate Table of Quadrupolar Relaxation Values

R1 = R1_QQ(dsys, 0);
R2 = R2_QQ(dsys, 0);

[* TIT2_Q* Tlplot_Q.cc *** Fekkoklek RrRRE K G- - T1=10R1;

% - - *k T2 =1.0/R2;

*x LW = R2/PI;
Example program for the GAMMA Library *x cout << “\n” << QCC]i]
** *k <<"“\t" << tau
** This program constructs a plot of T1 versus tau for a single ** << \t <<T1
** spin system under the effects of quadrupolar relaxation. *x << “\t" << T2
** The calculations are performed using a simple analytic b << << LW
** formula for the T1 time which assumes that spin motion is tau *= 10.0;

b dsys.taux(tau);
** that of a spherical top under rotationally diffusive motion. *x

*% *%

TR RN AR R RR R TR R R R AR AR R R RN R AR */ cout << “\n\n”;

#include <relax_Quad.h>

main (int argc, char* argv[])

cout << “\n\n\t\t\tGAMMA NMR Checking Program”;

}

cout << “\n\ttQuadrupolar Relaxation - Single Spin System\n\n”;

sys_dynamic dsys(1);
double bigO;
query_parameter(argc, argv, 1,
“Spectrometer Frequency (MHz)? “, bigO);
dsys.Omega(bigO);
String iso;
query_parameter(argc, argv, 2,
“Spin Isotope Type? *“, iso);
dsys.isotope(0, iso);
double QCC[4];
QCCJ[0] = 1.0e3;
QCCJ[1] = 100.0e3;
QCCJ[2] = 1.0e6;
QCCJ3] = 10.0e6;
double tau;
double taui = 1.e-12;
double R1,R2,T1,T2,LW;
cout << “\n\n\tQuadrupolar Relaxation of “
<< dsys.symbol(0) << “\n”;
cout << “\nQCCl\ttau”
<< “MTIMT2ULWHH";
for(int i=0; i<4; i++)

{

dsys.Qdelz(0, QCCIi]);
dsys.taux(taui);

tau = dsys.taux();
for(int j=-12; j<-6; j++)

Copyright Scott Smith

Il Set up a 1 spin system
/I Set the spectrometer frequency

/I Set the isotope type

/I Set up 4 QCC values

111 kHz

// 100 kHz

/' 1 MHz

// 10 MHz

/I Variable for tau

// Start at 10**-12 correlation

/I Loop over the 4 QCC values

/I Set system delzz
/I Set initial correlation time

/I Loop over different taus

/I Calculate R1

/I Calculate R2

/I Calculate T1 from R1

/I Calculate T2 from R2

/I Calculate Linewidth from R2

/I Output in form which can be

/I placed into a FrameMaker table

/I Increase tau by 10x

/I Tidy up output
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